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Introduction

In transfer learning, we observe
• A Target sample:

(X (0),y(0)) ∼ P (0)(x, y) = P (0)(y|x)P (0)(x).
• Multiple Source samples: for k = 1, . . . , K,

(X (k),y(k)) ∼ P (k)(x, y) = P (k)(y|x)P (k)(x).
Our Goal is to learn the target model P (0)(y|x), by
incorporating source information.

Challenge 1: covariate shift P (k)(x) ̸= P (0)(x).

Figure 1:How failure to manage covariate shifts across sources
can result in negative transfer.

⇒Our first question: How to develop a com-
putationally efficient method that handles model
shift, while being robust to covariate shift?

Challenge 2: model shift P (k)(x, y) ̸= P (0)(x, y).

Figure 2:Illustration of feature-wise model shift patterns

⇒Our second question: How to adapt to the
high-dimensional feature-wise model shift from
each source during knowledge transfer?

Problem Setting

High-dimensional Linear Regression:
Sample-level target model (with sample size nT ):

y(0) = X (0)β(0) + ϵ(0),

Sample-level source model (with sample size nS):
y(k) = X (k)(β(0) + δ(k)) + ϵ(k)

• E(ϵ(k)) = 0, Cov(ϵ(k)) = σ2I , ϵ(k) ⊥⊥ X (k)

•β(0) ∈ Rp is high-dimensional yet sparse.
• Covariate shift: Cov(X (k)

i ) = Σ(k) varies.
• Model shift: δ(k) ∈ Rp varies across k ∈ [K].

Key: Fused-Regularizer
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• The first term measures the average fitness.
• The fused-regularizer achives sparsity of β(0) and

shrinking the contrast δ(k) for transfer.
• The weight adjusts the info transfer from δ

(k)
j .

Why it is covariate-shift robust? It adjusts
for the kth source’s shift, δ(k), by separately estimat-
ing it using the source-specific sample (X (k),y(k)).
Why it is feature-wise adaptive? It adjusts
weights, wkj, applied to each δ

(k)
j :

• apply stronger penalties to transferable features
with negligible δ

(k)
j ;

→ shrink δ
(k)
j to 0, i.e. pool β(k)

j and β
(0)
j , if the

j-th feature from the k-th source is transferable.
• prevents excessive penalties to non-transferable

features with large δ
(k)
j .

→ prevent introducing bias from model shifts.

Theory: Robustness

Consider the parameter space
Θ(s, h) =

β
(0), δ : ∥β(0)∥0 ≤ s, ∥δ(k)∥1 ≤ hk

 .

We first propose an unweighted two-step method
with the fused-regularizer, named TransFusion,
which under mild conditions, w.h.p. yields
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Baseline: TransLasso, which adopts a "pooling
pertraining + debiasing" strategy, yields
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where CΣ measures the covariate-shift strength:
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and can diverge in the order of O(√p) !

Theory: Adaptation

Choice of weight: folded-concave Pλ0(·).

Borrowing the idea of local linear approximation,
take ŵ0j ∝ P ′

λ0
(β̂(0)

init,j) and ŵkj ∝ P ′
λ0

(δ̂(k)
init,j), where
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(0)
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init,j are initial estimators of β(0)

j and δj.
1 Define sparsity structure:

• Active target feature set: S0 = {j : β(0)
j ̸= 0},

• Inactive target feature set: S0 = {j : β(0)
j = 0};

2 Define transferability structure:
• Non-transferable set: Sk = {j : δ(k)

j ̸=0}, k = 1, . . . , K,
• Transferable set: Sc

k = {j : δ(k)
j = 0}, k = 1, . . . , K.

Theory: Adaptation (Cont’d)

Under mild conditions, if the transferable structure
is detectable, solving (1) yields the oracle solution

β̂
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(0)
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0
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• X̃S0 = ((X (0)
S0 )⊤, (X̃ (1)

S0 )⊤, . . . , (X̃ (K)
S0 )⊤)⊤.

• X̃ (k)
S0 = (I − H(k)

Sk
)X (k)

S0 : the projection of the
active target feature onto the null space of the
non-transferable feature in the k-th source.

Real-world Evidence

Figure 3:Covariate shifts in C-MNIST dataset: images with
different contamination demonstrate distinct pixel correlations.

Figure 4:Feature-wise model shifts in financial data: stocks
across sectors differ in key accounting metric features.

Our method demonstrates favorable performance
over other approaches in both datasets.




