

Introduction

In **transfer learning**, we observe

• A Target sample: $(\mathbf{X}^{(0)}, \mathbf{y}^{(0)}) \sim P^{(0)}(\mathbf{x}, y) = P^{(0)}(\mathbf{y}|\mathbf{x})P^{(0)}(\mathbf{x}).$ • Multiple **Source samples:** for k = 1, ..., K, $(X^{(k)}, y^{(k)}) \sim P^{(k)}(x, y) = P^{(k)}(y|x)P^{(k)}(x).$

Our Goal is to learn the target model $P^{(0)}(y|\boldsymbol{x})$, by incorporating source information.

Challenge 1: covariate shift $P^{(k)}(\boldsymbol{x}) \neq P^{(0)}(\boldsymbol{x})$.

Figure 1: How failure to manage covariate shifts across sources can result in negative transfer.

 \Rightarrow **Our first question:** How to develop a computationally efficient method that handles model shift, while being robust to covariate shift?

Challenge 2: model shift $P^{(k)}(\boldsymbol{x}, y) \neq P^{(0)}(\boldsymbol{x}, y)$.

Figure 2:Illustration of feature-wise model shift patterns

 \Rightarrow **Our second question:** How to adapt to the high-dimensional feature-wise model shift from each source during knowledge transfer?

Covariate-Shift Robust and Feature-wise Adaptive Transfer Learning for High-Dimensional Regression Zelin He, Ying Sun, Jingyuan Liu, Runze Li

Problem Setting

High-dimensional Linear Regression: Sample-level target model (with sample size n_T): $\boldsymbol{y}^{(0)} = \boldsymbol{X}^{(0)} \boldsymbol{\beta}^{(0)} + \boldsymbol{\epsilon}^{(0)},$	Cc We
Sample-level source model (with sample size n_S): $\boldsymbol{y}^{(k)} = \boldsymbol{X}^{(k)}(\boldsymbol{\beta}^{(0)} + \boldsymbol{\delta}^{(k)}) + \boldsymbol{\epsilon}^{(k)}$	wi wh
 E(ϵ^(k)) = 0, Cov(ϵ^(k)) = σ²I, ϵ^(k) ⊥ X^(k) β⁽⁰⁾ ∈ ℝ^p is high-dimensional yet sparse. Covariate shift: Cov(X_i^(k)) = Σ^(k) varies. Model shift: δ^(k) ∈ ℝ^p varies across k ∈ [K]. 	Ba per
Key: Fused-Regularizer	wh
We achieve transfer learning by solving $\underset{\boldsymbol{\beta},\boldsymbol{\delta}}{\operatorname{argmin}} \{ (2N)^{-1} \sum_{k=0}^{K} \ \boldsymbol{y}^{(k)} - \boldsymbol{X}^{(k)} (\boldsymbol{\beta}^{(0)} + \boldsymbol{\delta}^{(k)}) \ _{2}^{2} + \underbrace{\lambda_{0} \sum_{j=1}^{p} \hat{w}_{0j} \boldsymbol{\beta}_{j}^{(0)} }_{\operatorname{Sparsify}} + \underbrace{\lambda_{1} \sum_{k=1}^{K} \sum_{j=1}^{p} \hat{w}_{kj} \boldsymbol{\delta}_{j}^{(k)} }_{\operatorname{Transfer}} \}, $ (1)	C_{Σ} and
• The first term measures the average fitness.	Ν

- The fused-regularizer achives sparsity of $\boldsymbol{\beta}^{(0)}$ and shrinking the contrast $\boldsymbol{\delta}^{(k)}$ for transfer.
- The weight adjusts the info transfer from $\boldsymbol{\delta}_{i}^{(\kappa)}$.

Why it is covariate-shift robust? It adjusts for the kth source's shift, $\boldsymbol{\delta}^{(k)}$, by separately estimating it using the source-specific sample $(\mathbf{X}^{(k)}, \mathbf{y}^{(k)})$. Why it is feature-wise adaptive? It adjusts weights, w_{ki} , applied to each $\boldsymbol{\delta}_{i}^{(k)}$:

• apply stronger penalties to transferable features with negligible $\boldsymbol{\delta}_{i}^{(k)}$;

 \rightarrow shrink $\boldsymbol{\delta}_{i}^{(k)}$ to 0, i.e. pool $\boldsymbol{\beta}_{i}^{(k)}$ and $\boldsymbol{\beta}_{i}^{(0)}$, if the j-th feature from the k-th source is transferable.

• prevents excessive penalties to non-transferable features with large $\boldsymbol{\delta}_{i}^{(k)}$.

 \rightarrow prevent introducing bias from model shifts.

Theory: Robustness

Consider the parameter space $\Theta(s,h) = \{ \boldsymbol{\beta}^{(0)}, \boldsymbol{\delta} : \| \boldsymbol{\beta}^{(0)} \|_0 \le s, \| \boldsymbol{\delta}^{(k)} \|_1 \le h_k \}.$ Ve first propose an unweighted two-step method ith the fused-regularizer, named TransFusion, hich under mild conditions, w.h.p. yields $\|\hat{\boldsymbol{\beta}}_{\mathrm{TF}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_{2}^{2} \lesssim \frac{s\log p}{Kn_{S} + n_{T}} + \tilde{h} \frac{\log p}{n_{T}} \wedge \bar{h}^{2}.$ Correct $\boldsymbol{\delta}^{(k)}s$ Estimate $\boldsymbol{\beta}^{(0)}$ **Baseline:** TransLasso, which adopts a "pooling" ertraining + debiasing["] strategy, yields $\|\hat{\boldsymbol{\beta}}_{\text{Baseline}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2 \lesssim \frac{s\log p}{Kn_S + n_T} + C_{\Sigma}\bar{h} \left| \frac{\log p}{n_T} \wedge \bar{h}^2 \right|,$ where C_{Σ} measures the covariate-shift strength: $C_{\Sigma} := 1 + \max_{j \le p} \max_{k} \left| e_j^{\top} \left(\boldsymbol{\Sigma}^{(k)} - \boldsymbol{\Sigma}^{(0)} \right) \left(\sum_{1 \le k \le K} \frac{1}{K} \boldsymbol{\Sigma}^{(k)} \right)^{-1} \right|_{1},$ nd can diverge in the order of $O(\sqrt{p})$! **Theory:** Adaptation Choice of weight: folded-concave $\mathcal{P}_{\lambda_0}(\cdot)$.

Borrowing the idea of local linear approximation, take $\hat{w}_{0j} \propto \mathcal{P}'_{\lambda_0}(\hat{\boldsymbol{\beta}}^{(0)}_{\text{init},j})$ and $\hat{w}_{kj} \propto \mathcal{P}'_{\lambda_0}(\hat{\boldsymbol{\delta}}^{(k)}_{\text{init},j})$, where $\hat{\boldsymbol{\beta}}_{\text{init},j}^{(0)}$ and $\hat{\boldsymbol{\delta}}_{\text{init},j}^{(k)}$ are initial estimators of $\boldsymbol{\beta}_{j}^{(0)}$ and $\boldsymbol{\delta}_{j}$.

- **1** Define **sparsity structure**:
- Active target feature set: $S_0 = \{j : \beta_i^{(0)} \neq 0\},\$ • Inactive target feature set: $S_0 = \{j : \boldsymbol{\beta}_j^{(0)} = 0\};$
- **2** Define transferability structure:
- Non-transferable set: $S_k = \{j : \boldsymbol{\delta}_i^{(k)} \neq 0\}, k = 1, \dots, K,$ • Transferable set: $S_k^c = \{j : \delta_j^{(k)} = 0\}, k = 1, ..., K.$

Under mild conditions, if the transferable structure is detectable, solving (1) yields the oracle solution $\hat{\boldsymbol{\beta}}_{\mathrm{ora},S_0}^{(0)} = [\tilde{\boldsymbol{X}}_{S_0}^{\top} \tilde{\boldsymbol{X}}_{S_0}]^{-1} \tilde{\boldsymbol{X}}_{S_0}^{\top} \boldsymbol{y} \quad \mathrm{and} \quad \hat{\boldsymbol{\beta}}_{\mathrm{ora},S_0^c}^{(0)} = \boldsymbol{0}.$ • $\tilde{X}_{S_0} = ((X_{S_0}^{(0)})^{\top}, (\tilde{X}_{S_0}^{(1)})^{\top}, \dots, (\tilde{X}_{S_0}^{(K)})^{\top})^{\top}.$ • $\tilde{\boldsymbol{X}}_{S_0}^{(k)} = (\boldsymbol{I} - \boldsymbol{H}_{S_k}^{(k)}) \boldsymbol{X}_{S_0}^{(k)}$: the projection of the active target feature onto the null space of the

Figure 4:Feature-wise model shifts in financial data: stocks across sectors differ in key accounting metric features.

Our method demonstrates favorable performance over other approaches in both datasets.

Theory: Adaptation (Cont'd)

non-transferable feature in the k-th source.

▲ Non-transferable Feature Transferable Feature $\left(\boldsymbol{I}-\boldsymbol{H}_{S_k}^{(k)}\right)\boldsymbol{X}_{S_0}^{(k)}$ Transferable part

Transferable Feature

Real-world Evidence

Figure 3: Covariate shifts in C-MNIST dataset: images with different contamination demonstrate distinct pixel correlations.

