Covariate-Shift Robust and Feature-wise Adaptive Transfer Learning for High-Dimensional Regression Zelin He, Ying Sun, Jingyuan Liu, Runze Li

•A **Target sample:** $(\bm{X}^{(0)}, \bm{y}^{(0)}) \thicksim P^{(0)}(\bm{x},y) = P^{(0)}(y|\bm{x})P^{(0)}(\bm{x}).$ • Multiple **Source samples:** for $k = 1, \ldots, K$, $(P(X^{(k)}, y^{(k)}) \sim P^{(k)}(x, y) = P^{(k)}(y|x)P^{(k)}(x)$.

Introduction

In **transfer learning**, we observe

Our Goal is to learn the target model $P^{(0)}(y|\boldsymbol{x})$, by incorporating source information.

Challenge 1: covariate shift $P^{(k)}(\boldsymbol{x}) \neq P^{(0)}(\boldsymbol{x})$.

Figure 1:How failure to manage covariate shifts across sources can result in negative transfer.

⇒**Our first question:** *How to develop a computationally efficient method that handles model shift, while being robust to covariate shift?*

Challenge 2: model shift $P^{(k)}(\boldsymbol{x}, y) \neq P^{(0)}(\boldsymbol{x}, y)$.

Figure 2:Illustration of feature-wise model shift patterns

⇒**Our second question:** *How to adapt to the high-dimensional feature-wise model shift from each source during knowledge transfer?*

Why it is covariate-shift robust? It adjusts for the k th source's shift, $\boldsymbol{\delta}^{(k)}$, by separately estimating it using the source-specific sample $(\boldsymbol{X}^{(k)}, \boldsymbol{y}^{(k)})$. **Why it is feature-wise adaptive?** It adjusts weights, w_{kj} , applied to each $\boldsymbol{\delta}$ (*k*) $j^{(k)}$.

Problem Setting

• apply stronger penalties to transferable features with negligible $\boldsymbol{\delta}$ (*k*) $\frac{(\kappa)}{j},$

 \rightarrow shrink δ (*k*) *^j* to 0, i.e. pool β (*k*) $j^{(\kappa)}$ and $\boldsymbol{\beta}$ (0) $j^{(0)}$, if the *j*-th feature from the *k*-th source is transferable.

• prevents excessive penalties to non-transferable features with large $\boldsymbol{\delta}$ (*k*) $\frac{1}{j}^{\kappa}$.

 \rightarrow prevent introducing bias from model shifts.

 \bullet The weight adjusts the info transfer from $\pmb \delta$ $\frac{1}{j}^{\kappa}$.

Under mild conditions, if the transferable structure is detectable, solving [\(1\)](#page-0-0) yields the oracle solution $\boldsymbol{\hat{\beta}}^{(0)}_{\text{ora},S_0} = [\boldsymbol{\tilde{X}}_{S_0}^\top]$ $\mathbf{\hat{g}}^{(0)}_{\alpha}$ $[\tilde{\bm X}_{S_0}]^{-1} \tilde{\bm X}_{S_0}^\top$ \boldsymbol{y} and $\boldsymbol{\beta}$ = 0*.* $\overline{\text{ora}}, S_0^c$ *S*0 $(S_0^{(0)})^\top, (\tilde{\boldsymbol{X}}_{S_0}^{(1)})$ (0) $(S_0^{(1)})^\top,\ldots,(\tilde{\boldsymbol{X}}^{(K)}_{S_0})$ $\bullet \ \tilde{\bm{X}}_{S_0} = ((\bm{X}$ $\binom{K}{S_0}$ ^T)^T. \bullet $\tilde{\bm{X}}_{S_0}^{(k)}$ (*k*) (*k*) $S_0^{(\kappa)} = (\boldsymbol{I} - \mathbf{H})$ $\binom{\kappa}{S_k}$ \bm{X} $S_0^{(k)}$: the projection of the active target feature onto the null space of the non-transferable feature in the *k*-th source. Non-transferable Feature

Theory: Robustness

onsider the parameter space $\Theta(s,h)=\{$ $\big\vert \boldsymbol{\beta}^{(0)},\boldsymbol{\delta}:\Vert \boldsymbol{\beta}^{(0)}\Vert_0\leq s,\Vert \boldsymbol{\delta}^{(k)}\Vert_1\leq h_k\big\}$ \mathcal{L} *.* We first propose an unweighted two-step method with the fused-regularizer, named TransFusion, hich under mild conditions, w.h.p. yields $\|\hat{\boldsymbol{\beta}}$ $\boldsymbol{\hat{3}}_{\mathrm{TL}}^{(0)}$ $\frac{\rm{(0)}}{\rm TF}-\boldsymbol{\beta}^{(0)}\|_2^2\lesssim$ *s* log *p* $Kn_S + n_T$ Estimate $\boldsymbol{\beta}^{(0)}$ $+\bar{h}$ $\sqrt{ }$ log *p* n_T $\wedge \bar{h}^2$. $\overline{\text{Correct } \boldsymbol{\delta}^{(k)} s}$ **aseline:** TransLasso, which adopts a "pooling pertraining + debiasing" strategy, yields $\mathbf{\hat{3}}^{(0)}_{\mathrm{B}}$ $\frac{(0)}{\text{Baseline}} - \boldsymbol{\beta}^{(0)}\Vert_2^2 \lesssim$ *s* log *p* Kn_S+n_T $+ C_{\Sigma} \bar{h}$ $\sqrt{ }$ log *p* n_T $\wedge \bar{h}^2$, There C_{Σ} measures the covariate-shift strength: $C_{\Sigma} := 1 + \max_{i \leq n}$ *j*≤*p* max *k* II $\mathbf{\mathsf{I}}$ e_i^{\top} *j* $\left(\mathbf{\Sigma}^{(k)}-\mathbf{\Sigma}^{(0)}\right)$ $\overline{}$ $\sqrt{ }$ \sum 1≤*k*≤*K* 1 *K* $\boldsymbol{\Sigma}^{(k)}$ $\begin{vmatrix} -1 \\ 1 \end{vmatrix}$ $\begin{array}{c} \hline \end{array}$ II *,* and can diverge in the order of $O(\sqrt{p})$! **Theory: Adaptation Choice** of weight: folded-concave $\mathcal{P}_{\lambda_0}(\cdot)$. β

Borrowing the idea of local linear approximation, take $\hat{w}_{0j} \propto \mathcal{P}'_\lambda$ *λ*0 \overline{B} $\mathbf{\hat{z}}^{(0)}_{\mathrm{init}}$ $\hat{w}_{k j}^{(0)}$ and $\hat{w}_{k j} \propto \mathcal{P}'_{\lambda}$ *λ*0 $\left(\right)$ $\hat{\boldsymbol{\delta}}$ $\boldsymbol{\delta}$ (*k*) $\binom{\kappa}{\text{init},j}$, where $\mathbf{\hat{g}}^{(0)}_{\mathrm{init}}$ $\lim_{j \to j}^{(0)}$ and $\hat{\delta}$ δ (*k*) $\sum_{\text{init},j}^{(\kappa)}$ are initial estimators of $\boldsymbol{\beta}$ (0) $j^{(0)}$ and $\boldsymbol{\delta}_j$. ¹ Define **sparsity structure:**

• Active target feature set: $S_0 = \{j : \boldsymbol{\beta}_j^{(0)}\}$ $j^{(0)} \neq 0$,

 β

- Inactive target feature set: $S_0 = \{j : \boldsymbol{\beta}_j^{(0)}\}$ $j^{(0)}=0$ };
- ² Define **transferability structure:**
	- Non-transferable set: $S_k = \{j : \boldsymbol{\delta}_j^{(k)}\}$ $\{f^{(k)}\neq 0\},\ k=1,\ldots,K,$ • Transferable set: $S_k^c = \{j : \boldsymbol{\delta}\}$ (*k*) $j^{(k)}_{j} = 0 \},\, k = 1, \ldots, K.$

Theory: Adaptation (Cont'd)

Transferable Feature

Real-world Evidence

Figure 3:Covariate shifts in C-MNIST dataset: images with different contamination demonstrate distinct pixel correlations.

Figure 4:Feature-wise model shifts in financial data: stocks across sectors differ in key accounting metric features.

Our method demonstrates favorable performance over other approaches in both datasets.

