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Transfer Learning

Target sample: (X (0), y (0)) ⇠ P(0)(x , y) = P(0)(y |x)P(0)(x).
Source samples:

(X (k), y (k)) ⇠ P(k)(x , y) = P(k)(y |x)P(k)(x), k = 1, . . . ,K .

Goal of transfer learning:

Learn the target model P(0)(y |x), by incorporating source information.
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Model shift in Transfer Learning

Model shift: P (i)(y |x) 6= P (j)(y |x), i , j = 0, 1, . . . ,K .

Typical strategy to deal with HD model shift:

“Pooling training + debiasing”

Linear model: Li et al. (2022a,b)

Generalized linear model: Tian et al. (2022)

Quantile regression model: Jin et al. (2022), Cao and Song (2024)

...
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Covariate Shift in Transfer Learning

covariate shift: P(i)(x) 6= P (j)(x), i , j = 0, 1, . . . ,K .

Under high-dimensionality, covariate shift is often inevitable.
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Covariate Shift in Transfer Learning

Impact of covariate shift on pooling training:
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Covariate Shift in Transfer Learning

Existing works to deal with covariate shift:

Domain adaptation: Chen et al. (2016), Redko et al. (2020), etc.

! typically assumes no model shift;

! struggles with high-dimensional covariates.

Constrained `1-minimization: Li et al. (2023), etc.

! involves multiple nonsmooth constraints;

! restricted parameter space/strong theoretical assumptions;

! computationally intractable.

) Our first question:

How to develop a computationally tractable method that e↵ectively
handles model shift in high-dimensional transfer learning, while being
robust to covariate shift?
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Feature-specific Transferable Structure

Feature-specific transferable structure:

In high-dimensional transfer learning, the transferable structure often varies

across features within the same source sample.

E.g. Whole brain functional connectivity pattern analysis (Li et al., 2018):

Each source may have a distinct set of non-transferable features due to

variations in brain conditions.

) Our second question:

Is it possible to auto-detect nontransferable features/learn transferable
structure for each source while transferring source information?
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Key Contributions of the work

In the high-dimensional regression context:

To tackle the covariate shift issue, we
1 develop a new transfer learning framework via fused regularization, named

TransFusion;

2 extend TransFusion to a distributed setting, called D-TransFusion.

To further address the feature-specific transferable structure, we
3 propose a feature-adaptive transfer learning framework, named AdaTrans,

to auto-detect non-transferable feature.

For each method, we establish the corresponding non-asymptotic bound.
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High-dimensional Linear Regression Model

Sample-level target model (with sample size nT ):

y (0) = X (0)�(0) + ✏(0),

Sample-level source model (with sample size nS):

y (k) = X (k)�(k) + ✏(k) ⌘ X (k)(�(0) + �(k)) + ✏(k), k = 1, . . . ,K .

E(✏(k)) = 0, Cov(✏(k)) = �2I , ✏(k) ?? X (k), k = 0, 1, . . . ,K .

X (k)
i i.i.d sub-Gaussian across i , with covariance matrix ⌃(k).

p � nS � nT , �
(0) 2 Rp is high-dimensional yet sparse.

Covariate shift: Cov(X (k)
i ) = ⌃(k) varies across k.

Model shift: �(k) 2 Rp varies across k; take �(0) = 0.
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Objective function of TransFusion

Formulation: Estimate � := ((�(0))>, (�(1))>, . . . , (�(K))>)> 2 R(K+1)p by
solving

argmin
�2R(K+1)p

(
1
2N

KX

k=0

ky (k) � X (k)�(k)k22 +�0

⇣
k�(0)k1 +

KX

k=1

⌫k�(k) � �(0)k1
⌘)

,

Reformulation: Estimate ((�(0))>, (�(1))>, . . . , (�(K))>)> 2 R(K+1)p by solving

argmin
�2R(K+1)p

(
1
2N

 
KX

k=0

ky (k) � X (k)(�(0) + �(k))k22

!
+ �0

⇣
k�(0)k1 +

KX

k=1

⌫k�(k)k1
⌘)

,

N = KnS +nT is the total sample size, �0 and ⌫ are the tuning parameters.

The first term measures the average fitness of the models.

�0 and �0⌫ respectively take charge of achieving sparsity of �(0) and
shrinking the contrast �(k) = �(k) � �(0) for information transfer.
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Two-step TransFusion Estimator

Step 1. Joint training:

1 Obtain �̂ := ((�̂(0))>, (�̂(1))>, . . . , (�̂(K))>)> 2 R(K+1)p using a newly
advocated proximal gradient descent-based algorithm with
message-passing iteration.

2 Construct the first-step TransFusion estimator

�̂(0)

TF1
=

KX

k=1

nS
N

�̂(k) +
nT
N

�̂(0).

Step 2. Local debiasing:

3 If necessary, correct the bias of �̂(0)

TF1
using the target sample through

�̂ 2 argmin
�2Rp

⇢
1

2nT

���y (0) � X (0)�̂(0)

TF1
� X (0)�

���
2

2

+ �̃k�k1
�
,

4 Define the second-step TransFusion estimator

�̂(0)

TF2
= �̂(0)

TF1
+ �̂.
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Theoretical Guarantee for TransFusion

Theorem (Error rate of TransFusion estimators)

Consider the parameter space

⇥(s, h) =
n
B = (�(0),�(1), . . . ,�(K)) : k�(0)k0  s,

����(k) � �(0)

���
1

 h
o
.

Under mild conditions,

if nS � (K 2h2 _ s) log p, with a proper choice of �0, with probability at
least 1� c1 exp(�c2nT )� c3 exp (�c4 log p), we have

k�̂(0)

TF1 � �(0)k22 .
s log p
N

+ h

r
log p
nS

+"2D .

if nT & s log p, nS � K 2(h2 _ s) log p and h
p

log p/nT = o(1), with
probability at least 1� c2 exp (�c3 log p), we have

k�̂(0)

TF2 � �(0)k22 .
s log p
N

+ h

r
log p
nT

,
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Theoretical Guarantee for TransFusion

Theorem (Error rate of TransFusion estimators)

k�̂(0)

TF1 � �(0)k22 .
s log p
N

+ h

r
log p
nS

+"2D ;

k�̂(0)

TF2 � �(0)k22 .
s log p
N

+ h

r
log p
nT

.

s log p/N: rate of estimating �(0) based on the full sample with size N.

h
p

log p/nS : rate of estimating �(k)’s based on source samples.

"D = k
PK

k=1

nS
N (�(k) � �(0))k1: task diversity which measures the bias

introduced by averaging.

h
p

log p/nT : rate of estimating �(k)’s using the target sample.

Baseline: target-only lasso with rate O(s log p/nT ).

�̂(0)

TF1
is preferred when "D or nT is small, while �̂(0)

TF2
is preferred when "D

is non-negligible and nT is adequately large.
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Why TF is Robust to Covariate Shifts?

TransFusion utilizes task-specific parameters with a series of fused regularizers,
resulting in

�̂(0)

TF1 � �(0) ! 1
K

KX

k=1

(�(k) � �(0)).

Pooling training first pools all data and trains a common model, resulting in

�̂(0)

Pooling
� �(0) !

 
KX

k=1

⌃(k)

!�1 KX

k=1

⌃(k)(�(k) � �(0)).

The bias can be amplified by a factor (Li et al., 2022)

C⌃ := 1 + max
jp

max
k

������
e>j
⇣
⌃(k) �⌃(0)

⌘
0

@
X

1kK

1
K
⌃(k)

1

A
�1
������
1

,

which could diverge with rate
p
p.
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Distributed Transfer Learning in One-shot

Distributed setting: Source datasets are distributed across di↵erent machines.

Privacy concern: raw data cannot be shared across machines;

Communication bottleneck: inter-machine data communication is a
significant source of latency;

Pretraining & Fine-tuning strategy: quickly adapt to downstream tasks.
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Two-step D-TransFusion Estimator

Step 1: The kth source machine computes an initial estimator �̃(k) using
(X (k), y (k)) and sends it to the target machine. Then the target machine solves

�̂D 2 argmin
�2R(K+1)p

(
nS
2N

KX

k=1

k�̃(k) � �(k)k22 +
1
2N

ky (0) � X (0)�(0)k22

+�0

⇣
k�(0)k1 +

KX

k=1

⌫k�̃(k) � �(0)k1
⌘)

,

and obtains �̂(0)

D-TF1 =
nS
N

PK
k=1

�̂(k)
D + nT

N �̂(0)

D .

Step 2: The target node corrects �̂(0)

D-TF1
on its local sample (X (0), y (0)) by

�̂D 2 argmin

�2Rp

⇢
1

2nT

���y (0) � X (0)�̂
(0)

D-TF1
� X (0)�

���
2

2

+ �̃k�k1
�
,

and outputs the second-step estimator �̂(0)

D-TF2 = �̂(0)

D-TF1 + �̂D .

Only one-shot communication with the summary statistic is required.

D-TransFusion has the same rate as TransFusion under mild conditions.
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�̂D 2 argmin

�2Rp

⇢
1

2nT

���y (0) � X (0)�̂
(0)

D-TF1
� X (0)�

���
2

2

+ �̃k�k1
�
,

and outputs the second-step estimator �̂(0)

D-TF2 = �̂(0)

D-TF1 + �̂D .

Only one-shot communication with the summary statistic is required.

D-TransFusion has the same rate as TransFusion under mild conditions.
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3 Adaptive Covariate-shift Robust Transfer Learning
AdaTrans: Feature-wise Adaptive Transfer Learning
Oracle AdaTrans and Theoretical Guarantee of AdaTrans
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Intuition of AdaTrans

On base of TransFusion, consider the feature-specific transferable structure:

The transferability of the jth feature in the k-th source task can be assessed by
the magnitude of model shift �(k)

j . Ideally, we should...

apply stronger penalties to transferable features with negligible �(k)
j ;

! shrink �(k)
j to 0, i.e. pool �(k)

j and �(0)

j , if the j-th feature from the
k-th source is informative/transferable

prevents excessive penalties to non-transferable features with large �(k)
j .

! prevent introducing bias from non-transferable signals
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Key Idea of AdaTrans

Estimate �(0) by solving

argmin
�2R(K+1)p

(
1
2N

KX

k=0

ky (k) � X (k)(�(0) + �(k))k22 +
pX

j=1

ŵ0j |�(0)

j |+
KX

k=1

pX

j=1

ŵkj |�(k)
j |
)
,

Choice of weight? ) Folded-concave penalty function P�0
(·):

Borrowing the idea of local linear approximation, take ŵ0j / P 0
�0
(�̂(0)

init,j) and

ŵkj / P 0
�0
(�̂(k)

init,j), where �̂(0)

init,j and �̂(k)
init,j are initial estimators of �(0)

j and �j .
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Developing Theory for AdaTrans

Recall that under certain conditions, folded-concave penalization can obtain an
oracle estimator, where the sparsity and transferable structures are known.
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Oracle AdaTrans Estimator

How to define oracle estimator for AdaTrans?

1 Define sparsity structure:

Active target feature set: S0 = {j : �(0)

j 6= 0},
Inactive target feature set: Sc

0
= {j : �(0)

j = 0};

2 Define transferability structure:

Non-transferable set: Sk = {j : �(k)j 6=0}, k = 1, . . . ,K ,

Transferable set: Sc
k = {j : �(k)j = 0}, k = 1, . . . ,K .

3 Define oracle AdaTrans estimator �̂(0)

ora, �̂
(1)

ora, . . . , �̂
(K)

ora via

min
�(0),{�(k)}Kk=1

1
N

KX

k=0

ky (k) � X (k)(�(0) + �(k))k22

s.t. �(0)

Sc
0

= 0, �(k)
Sc
k
= 0, 8k = 1, . . . ,K .

(1)
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Oracle AdaTrans Estimator

Theorem (Solution of oracle AdaTrans estimator)

If |S0| < nT and max1kK |Sk | < nS , the solution to problem (1) satisfies

�̂(0)

ora,S0
= [X̃>

S0 X̃ S0 ]
�1X̃>

S0y and �̂(0)

ora,Sc
0

= 0. (2)

X̃ S0 = ((X (0)

S0
)>, (X̃ (1)

S0 )
>, . . . , (X̃ (K)

S0 )>)>.

X̃ (k)
S0 = (I �H(k)

Sk
)X (k)

S0
, where H(k)

Sk
:= X (k)

Sk
[(X (k)

Sk
)>X (k)

Sk
]�1(X (k)

Sk
)>.

X̃ (k)
S0 is indeed the projection of the active target feature onto the null

space of the non-transferable feature in the k-th source sample.
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Estimation Error of Oracle AdaTrans

Theorem (Estimation error of oracle AdaTrans)

If |S0| < nT , max1kK |Sk | < nS and N � log p, the error of �̂(0)

ora satisfies

k�̂(0)

ora � �(0)k2 . F

������

 
X>

S0
XS0

N

!�1
������
1

r
s log s

N
, (3)

with probability larger than 1� exp(c1 log p), where X S0 is column-submatrix
indexed by S0 of the full-sample design matrix X , and

F :=

���[X̃
>
S0 X̃ S0 ]

�1X̃>
S0✏
���
1��[X>

S0X S0 ]
�1X>

S0✏
��
1

.

F measures the transferability of source datasets. For k = 1, . . . ,K ,

if X (k)
Sk

? X (k)
S0

, all active features are transferable, then F = 1;

if S0 ⇢ Sk , all active features are non-transferable, then F ⇣
p

N/nT , and

the final rate becomes
p

s log s/nT .
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Theoretical Guarantee of AdaTrans

Theorem (Oracle property of AdaTrans)

Consider the parametric space

⇥1 =

⇢����(k)Sk

���
min

� h^k ,
����(k)Sc

k

���
max

= 0, k = 1, . . . ,K ;

����(0)

S0

���
min

� h^0 ,
����(0)

Sc
0

���
max

= 0

�
.

Suppose for some a > a2 � 0, the initial estimators satisfy
����̂(0)

init � �(0)

���
1

 a2
2
�0,

����̂(k)
init � �(k)

���
1

 a2
2
�1;

the minimal target signal h^
0 � a�0 &

q
log p
N , and the non-transferable signal

h^
k � a�1 &

q
nS
N

log p
N , and nS & log p. Then by choosing w0j = P 0

�0
(�̂(0)

init,j)/�0

and wkj = P 0
�1
(�̂(k)

init,j)/�1, with probability larger than 1� exp(�c1 log p), we
obtain the oracle AdaTrans.
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Outline

4 Numerical Studies
Simulation Examples for TransFusion
Simulation Examples for AdaTrans
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Simulation settings for TransFusion

Recall the regression models

y (0) = X (0)�(0) + ✏(0), y (k) = X (k)(�(0) + �(k)) + ✏(k), k = 1, . . . ,K .

General setup:

Target task: nT = 150, s = 10, �(0) = (1>
s , 0

>
p�s)

>, ✏(0)i ⇠ N(0, 1).

Source task: nS = 200, K 2 {1, 3, 5, 7, 9}, ✏(k)i ⇠ N(0, 1).

Model shift:

�(k)
j ⇠ N(0.1, 0.22) for 1  j  50 and �(k)

j = 0 otherwise.

Covariate shift:

Homogeneous design (without covariate shift): Each X (k)
i ⇠ N(0, I ).

Heterogeneous design (with covariate shift): Each X (k)
i ⇠ N(0,⌃(k)), with

⌃(k) = (A(k))>(A(k)) + I , where A(k) is a random matrix with each entry
equals 0.3 with probability 0.3 and equals 0 with probability 0.7.
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Methods to be compared

Lasso (baseline): LASSO regression on the target task.

TransLasso (first-step) (Li et al., 2022): pooled estimator.

TransLasso (two-step) (Li et al., 2022): debiased estimator.

TransHDGLM (Li et al., 2023).

TransFusion (first-step): the first step TransFusion estimator �̂(0)

TF1
.

TransFusion (two-step): the debiased TransFusion estimator �̂(0)

TF2
.
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Simulation Results: TransFusion

Figure: Estimation errors with/without covariate shift. Upper panel: task diversity

✏D 6= 0; lower panel: ✏D = 0.
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Simulation Results: D-TransFusion

Figure: Estimation errors with ✏D = 0 (left panel) and ✏D 6= 0 (right panel).
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Simulation Settings for AdaTrans

Recall the regression models

y (0) = X (0)�(0) + ✏(0), y (k) = X (k)(�(0) + �(k)) + ✏(k), k = 1, . . . ,K .

General setup:

Target task: nT = 50, s = 8, �(0) = (1>
s , 0

>
p�s)

>, ✏(0)i ⇠ N(0, 1).

Source task: nS = 200, K = 2, ✏(k)i ⇠ N(0, 1).

Covariate shift: Same as TransFusion.
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Simulation Settings for AdaTrans

Model shift:
We generate two source samples with non-overlapping transferable features:

First source: the non-transferable �(k) is nonzero for the first s/2 elements;

Second source: the non-transferable �(k) is nonzero from (s/2 + 1)-th to
25th elements.

Zelin He — Covariate-shift Robust Adaptive Transfer Learning 38/42



Methods to be compared

Lasso (baseline): LASSO regression on the target task.

TransGLM (Tian and Feng, 2022): TransLasso with source detection.

AdaTrans: AdaTrans estimator.

Oracle AdaTrans: Oracle AdaTrans estimator.
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Simulation Results: AdaTrans

Figure: Estimation errors of di↵erent transfer learning methods.

AdaTrans can also auto-detect and filter out non-transferable features.
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Conclusion

We proposed a new transfer learning framework that is robust to covariate shift
and adaptive to feature-specific transferable structure.

TransFusion: Conducting a fused-regularization based “joint training +
debiasing” to achieve covariate-shift robustness.

D-TransFusion: Incorporating intermediate estimators from di↵erent
machines into TransFusion with one-shot communication.

AdaTrans: Utilizing folded-concave penalization to auto-detect
transferable structure while estimating parameters.

Non-asymptotic bounds of estimation errors for all proposed estimators are
established.
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