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. X By Stat
Transfer Learning R penmstate

m Target sample: (X©,y©) ~ PO(x, y) = PO(y|x)PO(x).
m Source samples:

(X9 y ) ~ PO, y) = P 0PY (), k=1,... K.
m Goal of transfer learning:

Learn the target model P(O)(y|x), by incorporating source information.

X14 Source Sample 1

Target Sample

X1 __AA
{Unknown) True 1‘ I,
Target Classifier A

E.g. Classification ——

e

Problem

W Class 1 x2
M Class2 (]
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Model shift in Transfer Learning R Pennstate

= Model shift: PO(y|x) # PY(y|x), i,j=0,1,...,K.

Original Data Model shift
X1A X1a
I Class1
-~ _A_ ~A A A Il Class2
A ~~-. ] m====--
A A A
X2 X2
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Model shift in Transfer Learning

» Model shift: PO (y|x) # PY(y|x), i,j=0,1,...,K.

Original Data Model shift
X1A X14
__A__A A A
A ~~-. ] m====--
A A A
X2 X2

m Typical strategy to deal with HD model shift:
“Pooling training + debiasing”

Linear model: Li et al. (2022a,b)
Generalized linear model: Tian et al. (2022)

@ PennState

I Class1
I Class2

Quantile regression model: Jin et al. (2022), Cao and Song (2024)
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Covariate Shift in Transfer Learning &)

= covariate shift: PO(x) # PY(x), i,j=0,1,..., K.

Original Data Covariate shift
X1 X1
e S . M Class 1
‘_ .{A e _ A, M Class2
LA TT=3 H ety
A LA A
X2 X2

Under high-dimensionality, covariate shift is often inevitable.

PennState
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Covariate Shift in Transfer Learning

m Impact of covariate shift on pooling training:

Target Data

X1

(Unknown) True
Target Classifier

e

M Class 1 X2
M Class 2

X14 Source Data 1

Pooled Source Data

X1

LS.

Data
e

Pooling

X1A Source Data 2
X2

Negative Transfer!
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Covariate Shift in Transfer Learning R pennsiate

m Existing works to deal with covariate shift:
= Domain adaptation: Chen et al. (2016), Redko et al. (2020), etc.
— typically assumes no model shift;
— struggles with high-dimensional covariates.
m Constrained /;-minimization: Li et al. (2023), etc.
— involves multiple nonsmooth constraints;
— restricted parameter space/strong theoretical assumptions;

— computationally intractable.
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Covariate Shift in Transfer Learning R pennsiate

m Existing works to deal with covariate shift:

= Domain adaptation: Chen et al. (2016), Redko et al. (2020), etc.
— typically assumes no model shift;
— struggles with high-dimensional covariates.
m Constrained /;-minimization: Li et al. (2023), etc.
— involves multiple nonsmooth constraints;
— restricted parameter space/strong theoretical assumptions;

— computationally intractable.

= Our first question:

How to develop a computationally tractable method that effectively
handles model shift in high-dimensional transfer learning, while being
robust to covariate shift?
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Feature-specific Transferable Structure R Fenmnstare

m Feature-specific transferable structure:

m In high-dimensional transfer learning, the transferable structure often varies
across features within the same source sample.

m E.g. Whole brain functional connectivity pattern analysis (Li et al., 2018):
Each source may have a distinct set of non-transferable features due to
variations in brain conditions.

Feature space

A

/ \

Target

Source 1

Source 2

W Active target Features I Transferable Features
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Feature-specific Transferable Structure R Fenmnstare

m Feature-specific transferable structure:

m In high-dimensional transfer learning, the transferable structure often varies
across features within the same source sample.

m E.g. Whole brain functional connectivity pattern analysis (Li et al., 2018):
Each source may have a distinct set of non-transferable features due to
variations in brain conditions.

Feature space

A

/ \

Target

Source 1

Source 2

W Active target Features I Transferable Features

= QOur second question:

Is it possible to auto-detect nontransferable features/learn transferable
structure for each source while transferring source information?
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Key Contributions of the work @Pennsme

In the high-dimensional regression context:

m To tackle the covariate shift issue, we

develop a new transfer learning framework via fused regularization, named
TransFusion;

extend TransFusion to a distributed setting, called D-TransFusion.
m To further address the feature-specific transferable structure, we

propose a feature-adaptive transfer learning framework, named AdaTrans,
to auto-detect non-transferable feature.

m For each method, we establish the corresponding non-asymptotic bound.
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Covariate-shift Robust Transfer Learning
m TransFusion: Transfer Learning with a Fused Regularization
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PennState

High-dimensional Linear Regression Model &)

Sample-level target model (with sample size nr):

YO = x©050) 4 (0

Sample-level source model (with sample size ns):
Y = xR gW 4 (B = x50 | 50y LW g K

E(e®) =0, Cov(e®) =051, € 1L X k=0,1,..., K.

XEk) i.i.d sub-Gaussian across i, with covariance matrix X

p > ns > nr, B9 € R? is high-dimensional yet sparse.

Covariate shift: Cov(X!¥) = £* varies across k.
m Model shift: %) € RP varies across k; take 6 = 0.
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Objective function of TransFusion Q) remstate

Formulation: Estimate 8:= ((8®)",(8™)7,...,(8%)")T € RK+DP by

solving
K
e { N Z ly® = XOBNIE 420 (181 + > 8% — Bl ) } ’
BGR (K+1)p =1

Reformulation: Estimate ((8)7,(6M)T,... (6 T)T € RK+VP by solving

argmin {2N (Dy“ x(a )||2>+Ao(|ﬂ ||1+Zu|\6 ||)},

BER (K+1)p

m N = Kns + nrt is the total sample size, \g and v are the tuning parameters.
m The first term measures the average fitness of the models.

B Ao and \ov respectively take charge of achieving sparsity of B and
shrinking the contrast 6) = 8 — 8 for information transfer.
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Two-step TransFusion Estimator R pennsiaee

Step 1. Joint training:

Obtain B := (BT, (BT, ..., (BT € RKTDP ysing a newly
advocated proximal gradient descent-based algorithm with
message-passing iteration.

Construct the first-step TransFusion estimator

K
A0 SA nTAO
k=1
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Two-step TransFusion Estimator R pennsiaee

Step 1. Joint training:

Obtain B := (BT, (BT, ..., (BT € RKTDP ysing a newly
advocated proximal gradient descent-based algorithm with
message-passing iteration.

Construct the first-step TransFusion estimator
K n
5(0) ns a( T 5(0
o= B+ A
k=1

Step 2. Local debiasing:

If necessary, correct the bias of ,é(TOF)l using the target sample through

R N 2 .
4 € argmin { Hy X(O),[i’(TOF)1 - X(O)éH + >\|\6\|1} ;
2nt 2

SERP

Define the second-step TransFusion estimator

A (0 A (0 A
B(TF)Q - B(TF)l + 0.
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Theoretical Guarantee for TransFusion R pennsiate

Theorem (Error rate of TransFusion estimators)

Consider the parameter space
O(s, h) = {B — (B89,8W, ... 3% 1BV < s, Hﬁm _ 5(0)” < ,,}.
1

Under mild conditions,

m if ns > (K2h2 V s) log p, with a proper choice of \g, with probability at
least 1 — c1 exp(—c2nt) — czexp (—ca log p), we have

2 o slogp /log p
HIBTFI H2N N +h ne +¢b

m if nT > slogp, ns > K*(h* V s)log p and hy/log p/nt = o(1), with
probability at least 1 — ¢, exp (—c3 log p), we have

~ | |
18R, — 8O3 5 2BR 4 pp, [ 28R
N nrtr
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Theoretical Guarantee for TransFusion

Theorem (Error rate of TransFusion estimators)

A slogp log p
185~ Bl < =55 + by = P reb

~ | |
18R, — 8O3 5 28R 4 py, [ 28R
N nrt

@ PennState
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Theoretical Guarantee for TransFusion R pennsiate

Theorem (Error rate of TransFusion estimators)

~ slogp lo
185~ Bl < =55 + by = P reb

30) _ 502 < slog p |0gP
185, - 813 s 2928 + hy [ 2R

+ h .
nr

m slog p/N: rate of estimating B based on the full sample with size N.
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Theoretical Guarantee for TransFusion Q) pemnsiate

Theorem (Error rate of TransFusion estimators)

A slo lo
185~ Bl < =55 + by = P reb

300 _ 40)2 < Slogp |ogp
H/BTFQ 5 HZN N

+h .
nr

m slog p/N: rate of estimating B based on the full sample with size N.
m hy/log p/ns: rate of estimating 8()'s based on source samples.
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I . "~) Pennstat
Theoretical Guarantee for TransFusion R pennsiate

Theorem (Error rate of TransFusion estimators)

A slo lo
185~ Bl < =55 + by = P reb

30 202 < slogp h Iogp
H/BTFQ B HZN N +

nr

m slog p/N: rate of estimating B based on the full sample with size N.
m hy/log p/ns: rate of estimating 8()'s based on source samples.

mep=| Zle "WS(B(") — B)||1: task diversity which measures the bias
introduced by averaging.
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I . ") Pennstat
Theoretical Guarantee for TransFusion Q) pemnsiate

Theorem (Error rate of TransFusion estimators)

A slo lo
185~ Bl < =55 + by = P reb

|ogp
nr ’

- I
185 - BB < 22 + b

slogp/N: rate of estimating B based on the full sample with size N.
hy/log p/ns: rate of estimating 8()'s based on source samples.

en =38, 2(B% — BO)|1: task diversity which measures the bias
introduced by averaging.

hy/log p/nTt: rate of estimating 8§%)’s using the target sample.
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I . to 3 PennStat;
Theoretical Guarantee for TransFusion Q) pemnsiate

Theorem (Error rate of TransFusion estimators)

~ slo lo
188, — B3 < gp+m/i-%m

~ | |
18X, — 8O3 5 2282 |y, (OB
N nr

m slog p/N: rate of estimating B based on the full sample with size N.
m hy/log p/ns: rate of estimating 8()'s based on source samples.

mep = || 0, B(BY — BO)|1: task diversity which measures the bias
introduced by averaging.

m hy/log p/nt: rate of estimating 5¥)’s using the target sample.
m Baseline: target-only lasso with rate O(slog p/nr).
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I . to 3 PennStat;
Theoretical Guarantee for TransFusion Q) pemnsiate

Theorem (Error rate of TransFusion estimators)

~ slo lo
188, — B3 < gp+m/i-%m

~ | |
18X, — 8O3 5 2282 |y, (OB
N nr

m slogp/N: rate of estimating B based on the full sample with size N.
m hy/log p/ns: rate of estimating 8()'s based on source samples.

mep = || 0, B(BY — BO)|1: task diversity which measures the bias
introduced by averaging.

m hy/log p/nt: rate of estimating 5¥)’s using the target sample.

m Baseline: target-only lasso with rate O(slog p/nr).

u ,é(TOF)l is preferred when ep or nt is small, while ﬁA(TOF)2 is preferred when ep
is non-negligible and nt is adequately large.
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Why TF is Robust to Covariate Shifts? R penmstate

TransFusion utilizes task-specific parameters with a series of fused regularizers,

resulting in
K

B~ 89 = £ (8% - 5O,

k=1
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Why TF is Robust to Covariate Shifts? R penmstate

TransFusion utilizes task-specific parameters with a series of fused regularizers,
resulting in

K
A 1
BTk~ = 38"~ ).
k=1

Pooling training first pools all data and trains a common model, resulting in

K -1k
Blosing — B — (Z 2‘”) > =0(E" - 0).
k=1 k=1
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Why TF is Robust to Covariate Shifts? R penmstate

TransFusion utilizes task-specific parameters with a series of fused regularizers,
resulting in

K
A 1
BTk~ = 38"~ ).
k=1

Pooling training first pools all data and trains a common model, resulting in

K -1k
Blosing — B — (Z 2‘”) > =0(E" - 0).
k=1 k=1

The bias can be amplified by a factor (Li et al., 2022)
-1
., T (s2(k) _ 5200 1w
G .—1—|—rjn§ag<mfx € (E b ) Z KZ ,
1<k<K L

which could diverge with rate \/p.
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Covariate-shift Robust Transfer Learning

m D-TransFusion: TransFusion under Distributed Setting
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Distributed Transfer Learning in One-shot R penmstate

Distributed setting: Source datasets are distributed across different machines.
m Privacy concern: raw data cannot be shared across machines;

m Communication bottleneck: inter-machine data communication is a
significant source of latency;

m Pretraining & Fine-tuning strategy: quickly adapt to downstream tasks.

Fine-tune

Communication

Pretrain
—_—

Pretrain
—_—

u}
L)
I
i
it
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Two-step D-TransFusion Estimator Q) remstate

Step 1: The kth source machine computes an initial estimator %) using
(X(k),y(k)) and sends it to the target machine. Then the target machine solves

K
Bp € argmin {N Z )2 + 55 ||y — X032

,BEIR (K+1)p

K
20181 + - vIlB® - ﬁ(‘”ll)} ,

k=1

and obtains BE)O-)TFI = Zle Bg) + "WTBEJO).
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Two-step D-TransFusion Estimator Q) remstate

Step 1: The kth source machine computes an initial estimator %) using

(X(k),y(k)) and sends it to the target machine. Then the target machine solves

K
Bp € argmin {N Z )2 + 55 ||y — X032

,BelR (K+1)p
K ~
0 (18 + > vIBY ~ ﬁ“”ll)} !
k=1
and obtains BE)O-)TFI = Zle ﬁﬁ,” + HWTBEJO)-
Step 2: The target node corrects BA,(DO_)TH on its local sample (X(O),y(o)) by

& - X030 x4 15
8o < mgmin {1 [P0 - X0, - xO8] + S}

and outputs the second-step estimator ﬁgﬂ.m = fég)'rn + dp.
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Two-step D-TransFusion Estimator Q) remstate

Step 1: The kth source machine computes an initial estimator %) using
(X(k),y(k)) and sends it to the target machine. Then the target machine solves

K
Bp € argmin {N Z )2 + 55 ||y — X032

,BEIR (K+1)p
K ~
0 (18 + > vIBY ~ ﬁ“”ll)} !
k=1
and obtains BE)O.)TFI = Zle ﬁﬁ,” + HWTBEJO)-
Step 2: The target node corrects BA,(DO_)TH on its local sample (X(O),y(o)) by

& - X030 x4 15
8o < mgmin {1 [P0 - X0, - xO8] + S}

and outputs the second-step estimator ﬁg{%m = fég)'rn + dp.

m Only one-shot communication with the summary statistic is required.

m D-TransFusion has the same rate as TransFusion under mild conditions.
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Adaptive Covariate-shift Robust Transfer Learning
m AdaTrans: Feature-wise Adaptive Transfer Learning
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Intuition of AdaTrans @PennState

On base of TransFusion, consider the feature-specific transferable structure:

Feature space

A

Target

Source 1
Source 2

B Active target Features [ Transferable Features
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Intuition of AdaTrans @PennState

On base of TransFusion, consider the feature-specific transferable structure:

Feature space

A
s \

Target

Source 1
Source 2

B Active target Features [ Transferable Features

The transferability of the jth feature in the k-th source task can be assessed by
the magnitude of model shift 6}‘(). Ideally, we should...
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Intuition of AdaTrans @PennState

On base of TransFusion, consider the feature-specific transferable structure:

Feature space
A
4 N\
Target

Source 1
Source 2

B Active target Features [l Transferable Features

The transferability of the jth feature in the k-th source task can be assessed by
the magnitude of model shift 6}’(). Ideally, we should...
m apply stronger penalties to transferable features with negligible 6}“;
— shrink éj(k) to 0, i.e. pool ,BJ(-k) and ,81(-0), if the j-th feature from the

k-th source is informative/transferable

m prevents excessive penalties to non-transferable features with large J}k).
— prevent introducing bias from non-transferable signals
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"~ PennsStat
Key ldea of AdaTrans R penmstate
Estimate 8 by solving

argmin {2N2|y (B9 + 693 —I-Zwoj\ﬂ H—ZZWM )|}

BeR(K+1)p k=1 j=1
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"~ PennsStat
Key ldea of AdaTrans R penmstate
Estimate 8 by solving

argmin {2NZ| (B9 + 693 +ZW0j‘ﬂ H-ZZWAVM )|}

BeR(K+1)p k=1 j=1

Choice of weight?
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"~ PennsStat
Key ldea of AdaTrans R penmstate
Estimate 8 by solving

argmin {2N2|y (B9 + 693 —I-Zwoj\ﬂ H—ZZWM )|}

BeR(K+1)p k=1 j=1

Choice of weight? = Folded-concave penalty function P, (-):
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"~ PennsStat
Key ldea of AdaTrans R penmstate
Estimate 8 by solving

argmin { NZH B + 61| 3 —I-ZWOJW H-ZZWAVM )|}

BeR(K+1)p k=1 j=1
Choice of weight? = Folded-concave penalty function P, (-):

1
Pj,(x)

B LASSO

0.4 I SCAD
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Key Idea of AdaTrans @PEHnState

Estimate 8 by solving

BeR(K+1)p k=1 j=1
Choice of weight? = Folded-concave penalty function P, (-):

1
Pj,(x)

B LASSO

0.4 I SCAD

Borrowing the idea of local Ilnear approxmatnon take Wo; o< Py, (ﬂn?l)u) and
Wy o PAO(é( ), where B and &

init,j init,j Inlt

argmin { NZH B + 61| 3 +ZW0j‘ﬂ H-ZZWAVM 90,

. are initial estimators of ,8(0 and ¢;.
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Adaptive Covariate-shift Robust Transfer Learning

m Oracle AdaTrans and Theoretical Guarantee of AdaTrans
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Developing Theory for AdaTrans

@ PennState

Recall that under certain conditions, folded-concave penalization can obtain an
oracle estimator, where the sparsity and transferable structures are known.

Prove AdaTrans
, approaches oracle

Define oracle
estimator

I Obtain estimation
error of AdaTrans

of oracle estimator
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Oracle AdaTrans Estimator R Pennstate

How to define oracle estimator for AdaTrans?
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Oracle AdaTrans Estimator R Pennstate

How to define oracle estimator for AdaTrans?
Define sparsity structure:
m Active target feature set: Sp = {j: ,BJ(.O) # 0},

= Inactive target feature set: 5§ = {j : ,BJ(.O) =0};
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Oracle AdaTrans Estimator

How to define oracle estimator for AdaTrans?

Define sparsity structure:
m Active target feature set: Sp = {; : ,BJ(.O) # 0},
= Inactive target feature set: 5§ = {j : ,BJ(.O) =0};
Define transferability structure:
m Non-transferable set: S = {j: 5}”7&0}, k=1,...,K,
= Transferable set: Sf = {j: 8\ =0}, k=1,...,K.

@ PennState
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| '3 PennStat
Oracle AdaTrans Estimator R Pennstate

How to define oracle estimator for AdaTrans?

Define sparsity structure:
m Active target feature set: Sp = {; : ,BJ(.O) # 0},
= Inactive target feature set: 5§ = {j : ,BJ(.O) =0};
Define transferability structure:
m Non-transferable set: S = {j: 5}”7&0}, k=1,...,K,
= Transferable set: Sf = {j: 8\ =0}, k=1,...,K.

Define oracle AdaTrans estimator ,3,()?27 35)2, ey 5 via

min % KR
N Z (1)

5(0),{5(k)}f:
s.t. ﬂsg =0, 52? =0,Vk=1,...,K.
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Oracle AdaTrans Estimator R pennsiate

Theorem (Solution of oracle AdaTrans estimator)

If |So| < nT and maxi<k<k |Sk| < ns, the solution to problem (1) satisfies

. e
'Btg?a),SOZ[XSOXSO] 'Xsy and BY

= 0. (2)

ora,S§

(<)
= Xy = (X)) T.(XENT, . (XGHT)T

k —
s X5 = (1 - HP)XY, where HY = XWX )T x W11 (x )T
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Oracle AdaTrans Estimator R pennsiate

Theorem (Solution of oracle AdaTrans estimator)

If |So| < nT and maxi<k<k |Sk| < ns, the solution to problem (1) satisfies

. e
ﬁ(()?g,SOZ[XSOXSO] 'Xsy and BY

= 0. (2)

ora,S§

5 ()
= Xy = (X)) T.(XENT, . (XGHT)T

k —
s X5 = (1 - HP)XY, where HY = XWX )T x W11 (x )T

| XS0 is indeed the projection of the active target feature onto the null
space of the non-transferable feature in the k-th source sample.
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Oracle AdaTrans Estimator R pennsiate

Theorem (Solution of oracle AdaTrans estimator)

If |So| < nT and maxi<k<k |Sk| < ns, the solution to problem (1) satisfies

PN T oo 15T
Bs, = X5 Xs] Xy and BD) o =0. (2)

5 ()
= Xs, = (X)), (XE)T, . (XEHT)T

k —
s X5 = (1 - HP)XY, where HY = XWX )T x W11 (x )T

| XS0 is indeed the projection of the active target feature onto the null
space of the non-transferable feature in the k-th source sample.

» Non-transferable Feature

(k)
Xs,

Transferable Feature
k3

///,(1 -HP)x

Transferable part

Transferable Feature
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Estimation Error of Oracle AdaTrans R rennsiaee

Theorem (Estimation error of oracle AdaTrans)

If |So| < n7, maxi<k<k |Sk| < ns and N > log p, the error of BY) satisfies

T —1
XSOXSO
N

with probability larger than 1 — exp(ci log p), where X, is column-submatrix
indexed by Sy of the full-sample design matrix X, and

slogs

1862 — B2 < rr N (3)

oo

ST & o i@
H[XSOXSO] 1X50€
RF =

XS X)X el

.
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Estimation Error of Oracle AdaTrans R rennsiaee

Theorem (Estimation error of oracle AdaTrans)

If |So| < n7, maxi<k<k |Sk| < ns and N > log p, the error of,@Ag?a) satisfies

T —1
Xsoxs0
N

with probability larger than 1 — exp(ci log p), where X, is column-submatrix
indexed by Sy of the full-sample design matrix X, and

slogs

18622 — BOll2 < N (3)

o]

50 %a1 55|
X5 X5l X e,

RF

m KF measures the transferability of source datasets. For k =1,... K,
m if X(st) 1 X(S?, all active features are transferable, then kg = 1;
m if So C S, all active features are non-transferable, then kg < \/N/nt, and

the final rate becomes /slogs/nr.
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Theoretical Guarantee of AdaTrans Q) remstate

Theorem (Oracle property of AdaTrans)

Consider the parametric space

{le

Suppose for some a > ax > 0, the initial estimators satisfy

20|

:0,k:1,...,K;HB(S?H >R

min

(0) _
58 max - O} |

min max

[Bom = 80 < 3o [l 0] < Fau
the minimal target signal hi > aXo = "’%, and the non-transferable signal

hp > aX1 2 (/2 '82 and ns 2 log p. Then by choosing wo; = P4, (,@m,w)/Ao

and wy; = P3, (0 ,mtj)//\l, with probability larger than 1 — exp(—ci log p), we
obtain the oracle AdaTrans.
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Numerical Studies
m Simulation Examples for TransFusion
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Simulation settings for TransFusion R pennstate

Recall the regression models
YO = xOgO L (0 ) _ x5O 4 50y 4 W 1 K.

General setup:
= Target task: n7 =150, s = 10, B© = (17,0]_,)", € ~ N(0,1).
= Source task: ns =200, K € {1,3,5,7,9}, €*) ~ N(0,1).
Model shift:
L] J}k) ~ N(0.1,0.2%) for 1 < j < 50 and 6}") = 0 otherwise.
Covariate shift:
m Homogeneous design (without covariate shift): Each ng) ~ N(0,1).
m Heterogeneous design (with covariate shift): Each XSk) ~ N(0, %), with

s = (AT (AW) 1 1, where A% is a random matrix with each entry
equals 0.3 with probability 0.3 and equals 0 with probability 0.7.
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Methods to be compared R Pennstate

Lasso (baseline): LASSO regression on the target task.
TransLasso (first-step) (Li et al., 2022): pooled estimator.
m TranslLasso (two-step) (Li et al., 2022): debiased estimator.
TransHDGLM (Li et al., 2023).

m TransFusion (first-step): the first step TransFusion estimator ,@(TOF)I.

TransFusion (two-step): the debiased TransFusion estimator ,@?F)T
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Simulation Results: TransFusion R pennsiate

Homogeneous Design Heterogenous Design

Covariate shift

SEOSTT To e

L, Estimation Error
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Figure: Estimation errors with/without covariate shift. Upper panel: task diversity
ep # 0; lower panel: ep = 0.
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Simulation Results: D-TransFusion

Diverse Source Tasks Non-Diverse Source Tasks
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Figure: Estimation errors with ep = 0 (left panel) and ep # 0 (right panel).
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Numerical Studies

m Simulation Examples for AdaTrans
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Simulation Settings for AdaTrans @Pe““sm‘*

Recall the regression models
y(o) X030 4 O y( (,3 © 6("))—1—6("), k=1,...,K.
General setup:
m Target task: nr =50, s =8, ,8(0) =(1],0,_,)", 6,(-0) ~ N(0,1).
m Source task: ns =200, K = 2, e ~ N(0,1).

Covariate shift: Same as TransFusion.
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Simulation Settings for AdaTrans @P‘“‘“S‘a‘e

Model shift:
We generate two source samples with non-overlapping transferable features:

= First source: the non-transferable 8() is nonzero for the first s/2 elements;

= Second source: the non-transferable §°) is nonzero from (s/2 + 1)-th to
25th elements.

Feature space

A
[ N

Target

Source 1
Source 2

W Active target Features I Transferable Features
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Methods to be compared R Pennstate

Lasso (baseline): LASSO regression on the target task.

TransGLM (Tian and Feng, 2022): TransLasso with source detection.
m AdaTrans: AdaTrans estimator.

m Oracle AdaTrans: Oracle AdaTrans estimator.
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Simulation Results: AdaTrans gPennState
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Figure: Estimation errors of different transfer learning methods.

m AdaTrans can also auto-detect and filter out non-transferable features.
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Conclusion 0

We proposed a new transfer learning framework that is robust to covariate shift
and adaptive to feature-specific transferable structure.

m TransFusion: Conducting a fused-regularization based “joint training +
debiasing” to achieve covariate-shift robustness.

m D-TransFusion: Incorporating intermediate estimators from different
machines into TransFusion with one-shot communication.

m AdaTrans: Utilizing folded-concave penalization to auto-detect
transferable structure while estimating parameters.

m Non-asymptotic bounds of estimation errors for all proposed estimators are
established.
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ThankYou!
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