

Covariate-shift Robust Adaptive Transfer Learning for High-dimensional Regression

Zelin He

Dept. of Statistics, The Pennsylvania State University

Zelin He — [Covariate-shift Robust Adaptive Transfer Learning](#page-67-0) 1/42

 $2Q$

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Outline

1 [Introduction](#page-2-0)

- **[Background and Motivation](#page-2-0)**
- **[Key Contributions](#page-12-0)**

2 [Covariate-shift Robust Transfer Learning](#page-14-0)

- **[TransFusion: Transfer Learning with a Fused Regularization](#page-14-0)**
- [D-TransFusion: TransFusion under Distributed Setting](#page-30-0)

3 [Adaptive Covariate-shift Robust Transfer Learning](#page-35-0)

- **[AdaTrans: Feature-wise Adaptive Transfer Learning](#page-35-0)**
- [Oracle AdaTrans and Theoretical Guarantee of AdaTrans](#page-44-0)

4 [Numerical Studies](#page-56-0)

- [Simulation Examples for TransFusion](#page-56-0)
- [Simulation Examples for AdaTrans](#page-61-0)

5 [Conclusion](#page-66-0)

 \Rightarrow QQC

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Outline

- **[Background and Motivation](#page-2-0)**
- [Key Contributions](#page-12-0)

メロメメ 倒 メメミメメ ミメー ヨー

Transfer Learning

■ Target sample: $(X^{(0)}, y^{(0)}) \sim P^{(0)}(x, y) = P^{(0)}(y|x)P^{(0)}(x)$. Source samples:

$$
(\mathbf{X}^{(k)}, \mathbf{y}^{(k)}) \sim P^{(k)}(\mathbf{x}, \mathbf{y}) = P^{(k)}(\mathbf{y}|\mathbf{x}) P^{(k)}(\mathbf{x}), \ \mathbf{k} = 1, \ldots, \mathbf{K}.
$$

Goal of transfer learning:

Learn the target model $P^{(0)}(y|x)$, by incorporating source information.

Model shift in Transfer Learning

 $\mathsf{Model}\text{ shift: } P^{(i)}(y|\mathbf{x}) \neq P^{(j)}(y|\mathbf{x}), i, j = 0, 1, ..., K.$

メロトメ 御 トメ 君 トメ 君 トッ 君

Model shift in Transfer Learning

 $\mathsf{Model}\text{ shift: } P^{(i)}(y|\mathbf{x}) \neq P^{(j)}(y|\mathbf{x}), i, j = 0, 1, ..., K.$

■ Typical strategy to deal with HD model shift:

"Pooling training $+$ debiasing"

Linear model: Li et al. (2022a,b) Generalized linear model: Tian et al. (2022) Quantile regression model: Jin et al. (2022), Cao and Song (2024) ...

 $2Q$

メロトメ 御 トメ 重 トメ 差 トー 差

covariate shift: $P^{(i)}(x) \neq P^{(j)}(x)$, $i, j = 0, 1, ..., K$.

Under high-dimensionality, covariate shift is often inevitable.

 2990

メロメメ 倒す メミメメ ミメー き

Covariate Shift in Transfer Learning

Impact of covariate shift on pooling training:

 $2Q$

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Existing works to deal with covariate shift:

- Domain adaptation: Chen et al. (2016), Redko et al. (2020), etc.
	- \rightarrow typically assumes no model shift:
	- \rightarrow struggles with high-dimensional covariates.
- **Constrained** ℓ_1 -minimization: Li et al. (2023), etc.
	- \rightarrow involves multiple nonsmooth constraints:
	- \rightarrow restricted parameter space/strong theoretical assumptions;
	- \rightarrow computationally intractable.

 2090

K 다 ▶ K 라 ▶ K 코 ▶ K 코 ▶ / - 코 /

■ Existing works to deal with covariate shift:

- Domain adaptation: Chen et al. (2016), Redko et al. (2020), etc.
	- \rightarrow typically assumes no model shift:
	- \rightarrow struggles with high-dimensional covariates.
- **Constrained** ℓ_1 -minimization: Li et al. (2023), etc.
	- \rightarrow involves multiple nonsmooth constraints:
	- \rightarrow restricted parameter space/strong theoretical assumptions;
	- \rightarrow computationally intractable.

\Rightarrow Our first question:

How to develop a computationally tractable method that effectively handles model shift in high-dimensional transfer learning, while being robust to covariate shift?

 2090

イロメ イ押メ イヨメ イヨメーヨー

Feature-specific transferable structure:

- In high-dimensional transfer learning, the transferable structure often varies across features within the same source sample.
- \blacksquare E.g. Whole brain functional connectivity pattern analysis (Li et al., 2018): Each source may have a distinct set of non-transferable features due to variations in brain conditions.

G. QQC

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Feature-specific transferable structure:

- In high-dimensional transfer learning, the transferable structure often varies across features within the same source sample.
- \blacksquare E.g. Whole brain functional connectivity pattern analysis (Li et al., 2018): Each source may have a distinct set of non-transferable features due to variations in brain conditions.

\Rightarrow Our second question:

Is it possible to auto-detect nontransferable features/learn transferable structure for each source while transferring source information?

 QQ

∍

イロト イ押 トイヨ トイヨ トー

Outline

- **[Background and Motivation](#page-2-0)**
- **[Key Contributions](#page-12-0)**

メロメメ 御 メメ きょくきょうき

In the **high-dimensional regression** context:

- \blacksquare To tackle the covariate shift issue, we
	- 1 develop a new transfer learning framework via fused regularization, named TransFusion;
	- 2 extend TransFusion to a distributed setting, called D-TransFusion.
- To further address the feature-specific transferable structure, we
	- 3 propose a feature-adaptive transfer learning framework, named AdaTrans, to auto-detect non-transferable feature.
- **For each method, we establish the corresponding non-asymptotic bound.**

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

2 [Covariate-shift Robust Transfer Learning](#page-14-0)

- **[TransFusion: Transfer Learning with a Fused Regularization](#page-14-0)**
- [D-TransFusion: TransFusion under Distributed Setting](#page-30-0)

(ロトス個)→(差)→(差)→(差

Sample-level target model (with sample size *n^T*):

$$
\textbf{y}^{(0)} = \textbf{X}^{(0)} \boldsymbol{\beta}^{(0)} + \boldsymbol{\epsilon}^{(0)},
$$

Sample-level source model (with sample size *n^S*):

$$
\mathbf{y}^{(k)} = \mathbf{X}^{(k)}\boldsymbol{\beta}^{(k)} + \boldsymbol{\epsilon}^{(k)} \equiv \mathbf{X}^{(k)}(\boldsymbol{\beta}^{(0)} + \boldsymbol{\delta}^{(k)}) + \boldsymbol{\epsilon}^{(k)}, \ k = 1, \ldots, K.
$$

- $E(\epsilon^{(k)}) = 0$, $Cov(\epsilon^{(k)}) = \sigma^2 I$, $\epsilon^{(k)} \perp X^{(k)}$, $k = 0, 1, ..., K$.
- $\bm{X}_i^{(k)}$ i.i.d sub-Gaussian across *i*, with covariance matrix $\bm{\Sigma}^{(k)}$.
- $p > n_S > n_T$, $\beta^{(0)} \in \mathbb{R}^p$ is high-dimensional yet sparse.
- **Covariate shift:** $Cov(X_i^{(k)}) = \Sigma^{(k)}$ varies across *k*.
- **Model shift:** $\delta^{(k)} \in \mathbb{R}^p$ varies across k : take $\delta^{(0)} = 0$.

イロン イ母ン イヨン イヨン 一重

Formulation: Estimate $\beta := ((\beta^{(0)})^{\top}, (\beta^{(1)})^{\top}, \ldots, (\beta^{(K)})^{\top})^{\top} \in \mathbb{R}^{(K+1)p}$ by solving

$$
\underset{\boldsymbol{\beta} \in \mathbb{R}^{(K+1)\rho}}{\text{argmin}} \left\{ \frac{1}{2N} \sum_{k=0}^{K} \| \boldsymbol{y}^{(k)} - \boldsymbol{X}^{(k)} \boldsymbol{\beta}^{(k)} \|_2^2 \right. \left. + \lambda_0 \Big(\| \boldsymbol{\beta}^{(0)} \|_1 + \sum_{k=1}^{K} \nu \| \boldsymbol{\beta}^{(k)} - \boldsymbol{\beta}^{(0)} \|_1 \Big) \right\},
$$

 $\mathsf{Reformation:}$ Estimate $((\beta^{(0)})^\top,(\delta^{(1)})^\top,\ldots,(\delta^{(K)})^\top)^\top\in\mathbb{R}^{(K+1)p}$ by solving

$$
\underset{\boldsymbol{\beta}\in\mathbb{R}^{(K+1)\rho}}{\text{argmin}}\left\{\frac{1}{2N}\left(\sum_{k=0}^{K}\|\boldsymbol{y}^{(k)}-\boldsymbol{X}^{(k)}(\boldsymbol{\beta}^{(0)}+\boldsymbol{\delta}^{(k)})\|_{2}^{2}\right)+\lambda_0\left(\|\boldsymbol{\beta}^{(0)}\|_{1}+\sum_{k=1}^{K}\nu\|\boldsymbol{\delta}^{(k)}\|_{1}\right)\right\},
$$

 \blacksquare *N* = $Kn_5 + n_7$ is the total sample size, λ_0 and ν are the tuning parameters.

- **The first term measures the average fitness of the models.**
- Δ_0 and $\lambda_0 \nu$ respectively take charge of achieving sparsity of $\beta^{(0)}$ and shrinking the contrast $\delta^{(k)} = \beta^{(k)} - \beta^{(0)}$ for information transfer.

KORK EXTERNE ROAD

Two-step TransFusion Estimator

Step 1. Joint training:

- $\mathbf{1}$ Obtain $\hat{\boldsymbol{\beta}}:=((\hat{\beta}^{(0)})^\top,(\hat{\beta}^{(1)})^\top,\ldots,(\hat{\beta}^{(K)})^\top)^\top\in\mathbb{R}^{(K+1)\rho}$ using a newly advocated proximal gradient descent-based algorithm with message-passing iteration.
- 2 Construct the first-step TransFusion estimator

$$
\hat{\beta}_{\text{TF1}}^{(0)} = \sum_{k=1}^{K} \frac{n_S}{N} \hat{\beta}^{(k)} + \frac{n_T}{N} \hat{\beta}^{(0)}.
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결…

Two-step TransFusion Estimator

Step 1. Joint training:

- $\mathbf{1}$ Obtain $\hat{\boldsymbol{\beta}}:=((\hat{\beta}^{(0)})^\top,(\hat{\beta}^{(1)})^\top,\ldots,(\hat{\beta}^{(K)})^\top)^\top\in\mathbb{R}^{(K+1)\rho}$ using a newly advocated proximal gradient descent-based algorithm with message-passing iteration.
- 2 Construct the first-step TransFusion estimator

$$
\hat{\beta}_{\text{TF1}}^{(0)} = \sum_{k=1}^{K} \frac{n_S}{N} \hat{\beta}^{(k)} + \frac{n_T}{N} \hat{\beta}^{(0)}.
$$

Step 2. Local debiasing:

 \boldsymbol{s} If necessary, correct the bias of $\hat{\beta}^{(0)}_{\text{TF1}}$ using the target sample through

$$
\hat{\boldsymbol{\delta}} \in \underset{\boldsymbol{\delta} \in \mathbb{R}^p}{\text{argmin}} \left\{\frac{1}{2n_{\mathcal{T}}}\left\|\boldsymbol{y}^{(0)}-\boldsymbol{X}^{(0)}\hat{\boldsymbol{\beta}}_{\mathsf{TF1}}^{(0)}-\boldsymbol{X}^{(0)}\boldsymbol{\delta}\right\|_{2}^{2}+\tilde{\lambda}\|\boldsymbol{\delta}\|_{1}\right\},
$$

4 Define the second-step TransFusion estimator

$$
\hat{\bm{\beta}}_{\textsf{TF2}}^{(0)} = \hat{\bm{\beta}}_{\textsf{TF1}}^{(0)} + \hat{\bm{\delta}}.
$$

メロトメ 御 トメ 重 トメ 重 トー 重

Consider the parameter space

$$
\Theta(s,h)=\left\{B=(\beta^{(0)},\beta^{(1)},\ldots,\beta^{(K)}): \|\beta^{(0)}\|_0\leq s, \left\|\beta^{(k)}-\beta^{(0)}\right\|_1\leq h\right\}.
$$

Under mild conditions,

if $n_S \gg (K^2 h^2 \vee s)$ log *p, with a proper choice of* λ_0 *, with probability at least* $1 - c_1 \exp(-c_2 n_T) - c_3 \exp(-c_4 \log p)$, we have

$$
\|\hat{\beta}_{\mathit{TF1}}^{(0)}-\beta^{(0)}\|_2^2 \lesssim \frac{s\log p}{N} + h\sqrt{\frac{\log p}{n_S}} + \varepsilon_D^2.
$$

if $n_T \gtrsim s \log p$, $n_S \gg K^2(h^2 \vee s) \log p$ and $h \sqrt{\log p / n_T} = o(1)$, with *probability at least* $1 - c_2$ exp $(-c_3 \log p)$ *, we have*

$$
\|\hat{\beta}_{\mathit{TE2}}^{(0)}-\beta^{(0)}\|_2^2 \lesssim \frac{s\log p}{N} + h\sqrt{\frac{\log p}{n_{\mathcal{T}}}},
$$

イロメ イ何 メイヨメイヨメ

Theoretical Guarantee for TransFusion

Theorem (Error rate of TransFusion estimators)

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

Zelin He — [Covariate-shift Robust Adaptive Transfer Learning](#page-0-0) 17/42

メロメメ 倒 メメ きょく きょうきっ

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

s slog p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size N.

イロト イ部 トメ 差 トメ 差 トー 差し

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

s slog p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size N. $h\sqrt{\log p/n_S}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s based on source samples.

イロト イ部 トイ君 トイ君 トッ 君

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

- *s* log p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size *N*.
- $h\sqrt{\log p/n_S}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s based on source samples.
- $\varepsilon_D = \|\sum_{k=1}^K \frac{n_S}{N}(\bm{\beta}^{(k)} \bm{\beta}^{(0)})\|_1$: task diversity which measures the bias introduced by averaging.

イロト イ部 トイ活 トイ活 トリ 語り

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

- **s** slog p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size N.
- $h\sqrt{\log p/n_S}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s based on source samples.
- $\varepsilon_D = \|\sum_{k=1}^K \frac{n_S}{N}(\bm{\beta}^{(k)} \bm{\beta}^{(0)})\|_1$: task diversity which measures the bias introduced by averaging.
- $h\sqrt{\log p/n_T}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s using the target sample.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

- **s** slog p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size N.
- $h\sqrt{\log p/n_S}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s based on source samples.
- $\varepsilon_D = \|\sum_{k=1}^K \frac{n_S}{N}(\bm{\beta}^{(k)} \bm{\beta}^{(0)})\|_1$: task diversity which measures the bias introduced by averaging.
- $h\sqrt{\log p/n_T}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s using the target sample.
- **E** Baseline: target-only lasso with rate $O(s \log p / n_T)$.

 QQC

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

$$
\begin{aligned}\n\|\hat{\beta}_{T F I}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_S}}+\varepsilon_D^2; \\
\|\hat{\beta}_{T F 2}^{(0)}-\beta^{(0)}\|_2^2 &\leq \frac{s\log p}{N}+h\sqrt{\frac{\log p}{n_T}}.\n\end{aligned}
$$

- **s** slog p/N : rate of estimating $\beta^{(0)}$ based on the full sample with size N.
- $h\sqrt{\log p/n_S}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s based on source samples.
- $\varepsilon_D = \|\sum_{k=1}^K \frac{n_S}{N}(\bm{\beta}^{(k)} \bm{\beta}^{(0)})\|_1$: task diversity which measures the bias introduced by averaging.
- $h\sqrt{\log p/n_T}$: rate of estimating $\boldsymbol{\delta}^{(k)}$'s using the target sample.
- **E** Baseline: target-only lasso with rate $O(s \log p / n_T)$.
- $\hat{\beta}_{{\rm TF}1}^{(0)}$ is preferred when ε_D or $n_{\rm T}$ is small, while $\hat{\beta}_{{\rm TF}2}^{(0)}$ is preferred when ε_D is non-negligible and n_T is adequately large.

Why TF is Robust to Covariate Shifts?

TransFusion utilizes task-specific parameters with a series of fused regularizers, resulting in

$$
\hat{\beta}_{\text{TF1}}^{(0)} - \beta^{(0)} \rightarrow \frac{1}{K} \sum_{k=1}^{K} (\beta^{(k)} - \beta^{(0)}).
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Why TF is Robust to Covariate Shifts?

TransFusion utilizes task-specific parameters with a series of fused regularizers, resulting in

$$
\hat{\beta}_{\text{TF1}}^{(0)} - \beta^{(0)} \rightarrow \frac{1}{K} \sum_{k=1}^{K} (\beta^{(k)} - \beta^{(0)}).
$$

Pooling training first pools all data and trains a common model, resulting in

$$
\hat{\boldsymbol{\beta}}_{\text{Pooling}}^{(0)} - \boldsymbol{\beta}^{(0)} \rightarrow \left(\sum_{k=1}^K \boldsymbol{\Sigma}^{(k)}\right)^{-1} \sum_{k=1}^K \boldsymbol{\Sigma}^{(k)} (\boldsymbol{\beta}^{(k)} - \boldsymbol{\beta}^{(0)}).
$$

TransFusion utilizes task-specific parameters with a series of fused regularizers, resulting in

$$
\hat{\beta}_{TF1}^{(0)} - \beta^{(0)} \rightarrow \frac{1}{K} \sum_{k=1}^{K} (\beta^{(k)} - \beta^{(0)}).
$$

Pooling training first pools all data and trains a common model, resulting in

$$
\hat{\beta}_{\text{Pooling}}^{(0)}-\boldsymbol{\beta}^{(0)} \rightarrow \left(\sum_{k=1}^K \boldsymbol{\Sigma}^{(k)}\right)^{-1}\sum_{k=1}^K \boldsymbol{\Sigma}^{(k)}(\boldsymbol{\beta}^{(k)}-\boldsymbol{\beta}^{(0)}).
$$

The bias can be amplified by a factor (Li et al., 2022)

$$
\mathit{C}_{\Sigma} := 1 + \max_{j \leq \rho} \max_{k} \left\| e_{j}^{\top} \left(\Sigma^{(k)} - \Sigma^{(0)} \right) \left(\sum_{1 \leq k \leq K} \frac{1}{K} \Sigma^{(k)} \right)^{-1} \right\|_{1},
$$

which could diverge with rate \sqrt{p} .

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

2 [Covariate-shift Robust Transfer Learning](#page-14-0)

- **[TransFusion: Transfer Learning with a Fused Regularization](#page-14-0)**
- [D-TransFusion: TransFusion under Distributed Setting](#page-30-0)

メロトメ 御 トメ 君 トメ 君 トッ 君

Distributed Transfer Learning in One-shot PennState

Distributed setting: Source datasets are distributed across different machines.

- **Privacy concern: raw data cannot be shared across machines;**
- Communication bottleneck: inter-machine data communication is a significant source of latency;
- **P** Pretraining $\&$ Fine-tuning strategy: quickly adapt to downstream tasks.

Two-step D-TransFusion Estimator

Step 1: The *k*th source machine computes an initial estimator $\tilde{\beta}^{(k)}$ using $(\pmb{X}^{(k)},\pmb{y}^{(k)})$ and sends it to the target machine. Then the target machine solves

$$
\hat{\beta}_D \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{(K+1)\rho}}{\text{argmin}} \left\{ \frac{n_S}{2N} \sum_{k=1}^K \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(k)}\|_2^2 + \frac{1}{2N} \|\mathbf{y}^{(0)} - \mathbf{X}^{(0)}\boldsymbol{\beta}^{(0)}\|_2^2 \right. \\ \left. + \lambda_0 \left(\|\boldsymbol{\beta}^{(0)}\|_1 + \sum_{k=1}^K \nu \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(0)}\|_1 \right) \right\},
$$

and obtains $\hat{\beta}^{(0)}_\text{D-TF1} = \frac{n_S}{N}\sum_{k=1}^K \hat{\beta}^{(k)}_D + \frac{n_T}{N}\hat{\beta}^{(0)}_D.$

イロメ イ部 メイモメ イモメー 毛

Two-step D-TransFusion Estimator

Step 1: The *k*th source machine computes an initial estimator $\tilde{\beta}^{(k)}$ using $(\pmb{X}^{(k)},\pmb{y}^{(k)})$ and sends it to the target machine. Then the target machine solves

$$
\hat{\beta}_D \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{(K+1)\rho}}{\text{argmin}} \left\{ \frac{n_S}{2N} \sum_{k=1}^K \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(k)}\|_2^2 + \frac{1}{2N} \|\mathbf{y}^{(0)} - \mathbf{X}^{(0)}\boldsymbol{\beta}^{(0)}\|_2^2 \right. \\ \left. + \lambda_0 \left(\|\boldsymbol{\beta}^{(0)}\|_1 + \sum_{k=1}^K \nu \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(0)}\|_1 \right) \right\},
$$

and obtains $\hat{\beta}^{(0)}_\text{D-TF1} = \frac{n_S}{N}\sum_{k=1}^K \hat{\beta}^{(k)}_D + \frac{n_T}{N}\hat{\beta}^{(0)}_D.$

 $\mathsf{Step\ 2:}$ The target node corrects $\hat{\beta}_{\mathsf{D-TF1}}^{(0)}$ on its local sample $(\pmb{X}^{(0)},\pmb{y}^{(0)})$ by

$$
\hat{\delta}_D \in \underset{\delta \in \mathbb{R}^p}{\text{argmin}} \left\{ \frac{1}{2n_\mathcal{T}} \left\| \mathbf{y}^{(0)} - \mathbf{X}^{(0)} \hat{\beta}_{\text{D-TF1}}^{(0)} - \mathbf{X}^{(0)} \delta \right\|_2^2 + \tilde{\lambda} \|\delta\|_1 \right\},
$$

and outputs the second-step estimator $\hat{\beta}^{(0)}_{\text{D-TF2}}=\hat{\beta}^{(0)}_{\text{D-TF1}}+\hat{\delta}_D$.

メロトメ 御 トメ 重 トメ 重 トー 重

Two-step D-TransFusion Estimator

Step 1: The *k*th source machine computes an initial estimator $\tilde{\beta}^{(k)}$ using $(\pmb{X}^{(k)},\pmb{y}^{(k)})$ and sends it to the target machine. Then the target machine solves

$$
\hat{\beta}_D \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{(K+1)\rho}}{\text{argmin}} \left\{ \frac{n_S}{2N} \sum_{k=1}^K \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(k)}\|_2^2 + \frac{1}{2N} \|\mathbf{y}^{(0)} - \mathbf{X}^{(0)}\boldsymbol{\beta}^{(0)}\|_2^2 \right. \\ \left. + \lambda_0 \left(\|\boldsymbol{\beta}^{(0)}\|_1 + \sum_{k=1}^K \nu \|\tilde{\boldsymbol{\beta}}^{(k)} - \boldsymbol{\beta}^{(0)}\|_1 \right) \right\},
$$

and obtains $\hat{\beta}^{(0)}_\text{D-TF1} = \frac{n_S}{N}\sum_{k=1}^K \hat{\beta}^{(k)}_D + \frac{n_T}{N}\hat{\beta}^{(0)}_D.$

 $\mathsf{Step\ 2:}$ The target node corrects $\hat{\beta}_{\mathsf{D-TF1}}^{(0)}$ on its local sample $(\pmb{X}^{(0)},\pmb{y}^{(0)})$ by

$$
\hat{\delta}_D \in \underset{\delta \in \mathbb{R}^p}{\text{argmin}} \left\{ \frac{1}{2n_{\mathcal{T}}} \left\| \boldsymbol{y}^{(0)} - \boldsymbol{X}^{(0)} \hat{\beta}_{\text{D-TF1}}^{(0)} - \boldsymbol{X}^{(0)} \boldsymbol{\delta} \right\|_2^2 + \tilde{\lambda} \|\boldsymbol{\delta}\|_1 \right\},
$$

and outputs the second-step estimator $\hat{\beta}^{(0)}_{\text{D-TF2}}=\hat{\beta}^{(0)}_{\text{D-TF1}}+\hat{\delta}_D$.

- Only one-shot communication with the summary statistic is required.
- D-TransFusion has the same rate as TransFusio[n u](#page-33-0)[nd](#page-35-0)[er](#page-31-0)[m](#page-34-0)[il](#page-35-0)[d](#page-29-0) [c](#page-30-0)[o](#page-34-0)[n](#page-35-0)[di](#page-13-0)[ti](#page-14-0)on[s.](#page-0-0)

3 [Adaptive Covariate-shift Robust Transfer Learning](#page-35-0)

- [AdaTrans: Feature-wise Adaptive Transfer Learning](#page-35-0)
- [Oracle AdaTrans and Theoretical Guarantee of AdaTrans](#page-44-0)

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Intuition of AdaTrans

On base of TransFusion, consider the feature-specific transferable structure:

◆ロト→個ト→重ト→重ト→重。

Intuition of AdaTrans

On base of TransFusion, consider the feature-specific transferable structure:

The transferability of the *j*th feature in the *k*-th source task can be assessed by the magnitude of model shift $\delta_j^{(k)}$. Ideally, we should...

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Intuition of AdaTrans

On base of TransFusion, consider the feature-specific transferable structure:

The transferability of the *j*th feature in the *k*-th source task can be assessed by the magnitude of model shift $\delta_j^{(k)}$. Ideally, we should...

- apply stronger penalties to transferable features with negligible $\delta_j^{(k)};$ \rightarrow shrink $\delta_j^{(k)}$ to 0, i.e. pool $\beta_j^{(k)}$ and $\beta_j^{(0)}$, if the *j*-th feature from the *k*-th source is informative/transferable
- prevents excessive penalties to non-transferable features with large $\delta^{(k)}_j$. \rightarrow prevent introducing bias from non-transferable signals

メロメメ 倒す メミメメ ミメー き

Estimate $\beta^{(0)}$ by solving

$$
\mathop{\rm argmin}_{\bm{\beta} \in \mathbb{R}^{(K+1) p}} \left\{ \frac{1}{2N} \sum_{k=0}^K \| \bm{y}^{(k)} - \bm{X}^{(k)} (\bm{\beta}^{(0)} + \bm{\delta}^{(k)}) \|_2^2 + \sum_{j=1}^p \hat{w}_{0j} |\bm{\beta}_j^{(0)}| + \sum_{k=1}^K \sum_{j=1}^p \hat{w}_{kj} |\bm{\delta}_j^{(k)}| \right\},
$$

メロメメ 倒 メメミメメ ミメー ヨー

Estimate $\beta^{(0)}$ by solving

$$
\mathop{\rm argmin}_{\bm{\beta} \in \mathbb{R}^{(K+1) p}} \left\{ \frac{1}{2N} \sum_{k=0}^K \| \bm{y}^{(k)} - \bm{X}^{(k)} (\bm{\beta}^{(0)} + \bm{\delta}^{(k)}) \|_2^2 + \sum_{j=1}^p \hat{w}_{0j} |\bm{\beta}_j^{(0)}| + \sum_{k=1}^K \sum_{j=1}^p \hat{w}_{kj} |\bm{\delta}_j^{(k)}| \right\},
$$

Choice of weight?

イロメ イ部 メイモメ イモメー 毛

Estimate $\beta^{(0)}$ by solving

$$
\mathop{\rm argmin}_{\bm{\beta} \in \mathbb{R}^{(K+1) p}} \left\{ \frac{1}{2N} \sum_{k=0}^K \| \bm{y}^{(k)} - \bm{X}^{(k)} (\bm{\beta}^{(0)} + \bm{\delta}^{(k)}) \|_2^2 + \sum_{j=1}^p \hat{w}_{0j} |\bm{\beta}_j^{(0)}| + \sum_{k=1}^K \sum_{j=1}^p \hat{w}_{kj} |\bm{\delta}_j^{(k)}| \right\},
$$

Choice of weight? \Rightarrow Folded-concave penalty function $\mathcal{P}_{\lambda_0}(\cdot)$:

イロメ イ部 メイモメ イモメー 毛

Estimate $\beta^{(0)}$ by solving

$$
\mathop{\rm argmin}_{\bm{\beta} \in \mathbb{R}^{(K+1) p}} \left\{ \frac{1}{2N} \sum_{k=0}^K \| \bm{y}^{(k)} - \bm{X}^{(k)} (\bm{\beta}^{(0)} + \bm{\delta}^{(k)}) \|_2^2 + \sum_{j=1}^p \hat{w}_{0j} |\bm{\beta}_j^{(0)}| + \sum_{k=1}^K \sum_{j=1}^p \hat{w}_{kj} |\bm{\delta}_j^{(k)}| \right\},
$$

Choice of weight? \Rightarrow Folded-concave penalty function $\mathcal{P}_{\lambda_0}(\cdot)$:

メロメメ 御 メメ きょくきょうき

Estimate $\beta^{(0)}$ by solving

$$
\mathop{\rm argmin}_{\bm{\beta} \in \mathbb{R}^{(K+1) p}} \left\{ \frac{1}{2N} \sum_{k=0}^K \| \bm{y}^{(k)} - \bm{X}^{(k)} (\bm{\beta}^{(0)} + \bm{\delta}^{(k)}) \|_2^2 + \sum_{j=1}^p \hat{w}_{0j} |\bm{\beta}_j^{(0)}| + \sum_{k=1}^K \sum_{j=1}^p \hat{w}_{kj} |\bm{\delta}_j^{(k)}| \right\},
$$

Choice of weight? \Rightarrow Folded-concave penalty function $\mathcal{P}_{\lambda_0}(\cdot)$:

Borrowing the idea of local linear approximation, take $\hat w_{0j} \propto \mathcal{P}'_{\lambda_0}(\hat \beta^{(0)}_\mathsf{init,j})$ and $\hat{w}_{kj}\propto\mathcal{P}_{\lambda_0}'(\hat{\delta}_{\text{init},j}^{(k)}),$ where $\hat{\beta}_{\text{init},j}^{(0)}$ and $\hat{\delta}_{\text{init},j}^{(k)}$ are initial estimators of $\beta_j^{(0)}$ and $\delta_j.$ メロメメ 倒す メミメメ ミメー き

3 [Adaptive Covariate-shift Robust Transfer Learning](#page-35-0)

- **[AdaTrans: Feature-wise Adaptive Transfer Learning](#page-35-0)**
- [Oracle AdaTrans and Theoretical Guarantee of AdaTrans](#page-44-0)

(ロトス個)→(差)→(差)→(差

Recall that under certain conditions, folded-concave penalization can obtain an oracle estimator, where the sparsity and transferable structures are known.

э

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

How to define oracle estimator for AdaTrans?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 のなで

How to define oracle estimator for AdaTrans?

- **1** Define sparsity structure:
	- Active target feature set: $S_0 = \{j: \beta_j^{(0)} \neq 0\},$
	- I nactive target feature set: $S_0^c = \{j : \beta_j^{(0)} = 0\};$

メロトメ 御 トメ 君 トメ 君 トッ 君

How to define oracle estimator for AdaTrans?

- **1** Define sparsity structure:
	- Active target feature set: $S_0 = \{j: \beta_j^{(0)} \neq 0\},$
	- I nactive target feature set: $S_0^c = \{j : \beta_j^{(0)} = 0\};$
- 2 Define transferability structure:
	- Non-transferable set: $S_k = \{j : \delta_j^{(k)} \neq 0\}$, $k = 1, \ldots, K$,
	- $\textsf{Transferable set: } S_k^c = \{j: \delta_j^{(k)} = 0\}, \ k = 1, \ldots, K.$

K 다 ▶ K 라 ▶ K 코 ▶ K 코 ▶ / - 코 /

How to define oracle estimator for AdaTrans?

- **1** Define sparsity structure:
	- Active target feature set: $S_0 = \{j: \beta_j^{(0)} \neq 0\},$
	- I nactive target feature set: $S_0^c = \{j : \beta_j^{(0)} = 0\};$
- 2 Define transferability structure:
	- Non-transferable set: $S_k = \{j : \delta_j^{(k)} \neq 0\}$, $k = 1, \ldots, K$,
	- $\textsf{Transferable set: } S_k^c = \{j: \delta_j^{(k)} = 0\}, \ k = 1, \ldots, K.$
- $\bm{3}$ Define oracle AdaTrans estimator $\hat{\beta}^{(0)}_{\sf ora}, \hat{\delta}^{(1)}_{\sf ora}, \ldots, \hat{\delta}^{(K)}_{\sf ora}$ via

$$
\min_{\beta^{(0)}, \{\delta^{(k)}\}_{k=1}^K} \frac{1}{N} \sum_{k=0}^K \|\mathbf{y}^{(k)} - \mathbf{X}^{(k)}(\beta^{(0)} + \delta^{(k)})\|_2^2
$$
\ns.t.
$$
\beta_{S_0^c}^{(0)} = 0, \ \delta_{S_k^c}^{(k)} = 0, \forall k = 1, ..., K.
$$
\n(1)

メロトメ 御 トメ 重 トメ 重 トー 重 …

Theorem (Solution of oracle AdaTrans estimator)

 $|f|S_0| < n_T$ *and* max₁ k_K $|S_k| < n_S$, the solution to problem [\(1\)](#page-46-0) satisfies

$$
\hat{\beta}_{\text{ora},S_0}^{(0)} = [\tilde{\boldsymbol{X}}_{S_0}^\top \tilde{\boldsymbol{X}}_{S_0}]^{-1} \tilde{\boldsymbol{X}}_{S_0}^\top \boldsymbol{y} \quad \text{and} \quad \hat{\beta}_{\text{ora},S_0}^{(0)} = \boldsymbol{0}.\tag{2}
$$

■
$$
\tilde{X}_{S_0} = ((X_{S_0}^{(0)})^\top, (\tilde{X}_{S_0}^{(1)})^\top, ..., (\tilde{X}_{S_0}^{(K)})^\top)^\top
$$
.
\n■ $\tilde{X}_{S_0}^{(k)} = (I - H_{S_k}^{(k)}) X_{S_0}^{(k)}$, where $H_{S_k}^{(k)} := X_{S_k}^{(k)}[(X_{S_k}^{(k)})^\top X_{S_k}^{(k)}]^{-1} (X_{S_k}^{(k)})^\top$.

◆ロト→個ト→電ト→電ト | 暑|

Theorem (Solution of oracle AdaTrans estimator)

 $|f|S_0| < n_T$ and max_{1<k<K} $|S_k| < n_S$, the solution to problem [\(1\)](#page-46-0) satisfies

$$
\hat{\beta}_{\text{ora},S_0}^{(0)} = [\tilde{\boldsymbol{X}}_{S_0}^\top \tilde{\boldsymbol{X}}_{S_0}]^{-1} \tilde{\boldsymbol{X}}_{S_0}^\top \boldsymbol{y} \quad \text{and} \quad \hat{\beta}_{\text{ora},S_0}^{(0)} = \boldsymbol{0}.\tag{2}
$$

$$
\blacksquare\ \tilde{\pmb{X}}_{S_0} = ((\pmb{X}_{S_0}^{(0)})^\top, (\tilde{\pmb{X}}_{S_0}^{(1)})^\top, \ldots, (\tilde{\pmb{X}}_{S_0}^{(K)})^\top)^\top.
$$

$$
\text{ if }\widetilde{\textbf{X}}_{S_0}^{(k)}=(\textbf{I}-\textbf{H}_{S_k}^{(k)})\textbf{X}_{S_0}^{(k)}, \text{ where } \textbf{H}_{S_k}^{(k)}:=\textbf{X}_{S_k}^{(k)}[(\textbf{X}_{S_k}^{(k)})^\top\textbf{X}_{S_k}^{(k)}]^{-1}(\textbf{X}_{S_k}^{(k)})^\top.
$$

 $\tilde{\pmb{X}}^{(k)}_{S_0}$ is indeed the projection of the active target feature onto the null space of the non-transferable feature in the *k*-th source sample.

(ロトス個)→(差)→(差)→(差

Theorem (Solution of oracle AdaTrans estimator)

 $|f|S_0| < n_T$ and max_{1<k<K} $|S_k| < n_S$, the solution to problem [\(1\)](#page-46-0) satisfies

$$
\hat{\beta}_{\text{ora},S_0}^{(0)} = [\tilde{\boldsymbol{X}}_{S_0}^\top \tilde{\boldsymbol{X}}_{S_0}]^{-1} \tilde{\boldsymbol{X}}_{S_0}^\top \boldsymbol{y} \quad \text{and} \quad \hat{\beta}_{\text{ora},S_0}^{(0)} = \boldsymbol{0}.\tag{2}
$$

$$
\blacksquare\ \tilde{\pmb{X}}_{S_0} = ((\pmb{X}_{S_0}^{(0)})^\top, (\tilde{\pmb{X}}_{S_0}^{(1)})^\top, \ldots, (\tilde{\pmb{X}}_{S_0}^{(K)})^\top)^\top.
$$

$$
\text{ if }\widetilde{\textbf{X}}_{S_0}^{(k)}=(\textbf{I}-\textbf{H}_{S_k}^{(k)})\textbf{X}_{S_0}^{(k)}, \text{ where } \textbf{H}_{S_k}^{(k)}:=\textbf{X}_{S_k}^{(k)}[(\textbf{X}_{S_k}^{(k)})^\top\textbf{X}_{S_k}^{(k)}]^{-1}(\textbf{X}_{S_k}^{(k)})^\top.
$$

 $\tilde{\pmb{X}}^{(k)}_{S_0}$ is indeed the projection of the active target feature onto the null space of the non-transferable feature in the *k*-th source sample.

 QQC

Theorem (Estimation error of oracle AdaTrans)

If $|S_0| < n_T$, $\max_{1 \leq k \leq K} |S_k| < n_S$ and $N \geq \log p$, the error of $\hat{\beta}_{\text{ora}}^{(0)}$ satisfies

$$
\|\hat{\beta}_{\text{ora}}^{(0)} - \beta^{(0)}\|_2 \lesssim \kappa_F \left\| \left(\frac{\mathbf{X}_{S_0}^{\top} \mathbf{X}_{S_0}}{N} \right)^{-1} \right\|_{\infty} \sqrt{\frac{s \log s}{N}}, \tag{3}
$$

with probability larger than $1 - \exp(c_1 \log p)$ *, where* X_{S_0} *is column-submatrix indexed by S*⁰ *of the full-sample design matrix X, and*

$$
\kappa_F:=\frac{\left\|\tilde{[\mathbf{X}}_{S_0}^\top\tilde{\mathbf{X}}_{S_0}]^{-1}\tilde{\mathbf{X}}_{S_0}^\top\boldsymbol{\epsilon}\right\|_{\infty}}{\left\|\left[\mathbf{X}_{S_0}^\top\mathbf{X}_{S_0}\right]^{-1}\mathbf{X}_{S_0}^\top\boldsymbol{\epsilon}\right\|_{\infty}}.
$$

K 다 ▶ K 라 ▶ K 코 ▶ K 코 ▶ / - 코 /

Theorem (Estimation error of oracle AdaTrans)

If $|S_0| < n_T$, $\max_{1 \leq k \leq K} |S_k| < n_S$ and $N \geq \log p$, the error of $\hat{\beta}_{\text{ora}}^{(0)}$ satisfies

$$
\|\hat{\beta}_{\text{ora}}^{(0)} - \beta^{(0)}\|_2 \lesssim \kappa_F \left\| \left(\frac{\boldsymbol{X}_{\mathcal{S}_0}^{\top} \boldsymbol{X}_{\mathcal{S}_0}}{N} \right)^{-1} \right\|_{\infty} \sqrt{\frac{s \log s}{N}}, \tag{3}
$$

with probability larger than $1 - \exp(c_1 \log p)$ *, where* X_{S_0} *is column-submatrix indexed by S*⁰ *of the full-sample design matrix X, and*

$$
\kappa_F:=\frac{\left\|\tilde{[\mathbf{X}}_{S_0}^\top\tilde{\mathbf{X}}_{S_0}]^{-1}\tilde{\mathbf{X}}_{S_0}^\top\boldsymbol{\epsilon}\right\|_{\infty}}{\left\|\left[\mathbf{X}_{S_0}^\top\mathbf{X}_{S_0}\right]^{-1}\mathbf{X}_{S_0}^\top\boldsymbol{\epsilon}\right\|_{\infty}}.
$$

- *F* measures the transferability of source datasets. For $k = 1, ..., K$,
	- if $\bm{X}_{S_k}^{(k)} \perp \bm{X}_{S_0}^{(k)}$, all active features are transferable, then $\kappa_F=1;$
	- \blacksquare if $S_0 \subset S_k$, all active features are non-transferable, then $\kappa_F \asymp \sqrt{N/n_T}$, and the final rate becomes $\sqrt{s \log s / n_T}$. $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Theorem (Oracle property of AdaTrans)

Consider the parametric space

$$
\Theta_1 = \left\{ \left\| \delta_{S_k}^{(k)} \right\|_{\min} \geq h_k^{\wedge}, \left\| \delta_{S_k^c}^{(k)} \right\|_{\max} = 0, k = 1, \ldots, K; \left\| \beta_{S_0}^{(0)} \right\|_{\min} \geq h_0^{\wedge}, \left\| \beta_{S_0^c}^{(0)} \right\|_{\max} = 0 \right\}.
$$

Suppose for some $a > a_0 > 0$, the initial estimators satisfy

$$
\left\|\hat{\beta}^{(0)}_{\textit{init}} - \beta^{(0)}\right\|_\infty \leq \frac{a_2}{2}\lambda_0, \; \left\|\hat{\delta}^{(k)}_{\textit{init}} - \delta^{(k)}\right\|_\infty \leq \frac{a_2}{2}\lambda_1;
$$

 t he minimal target signal $h_0^\wedge \geq a\lambda_0 \gtrsim \sqrt{\frac{\log p}{N}}$, and the non-transferable signal $h_k^{\wedge} \ge a\lambda_1 \gtrsim \sqrt{\frac{n_S}{N} \frac{\log p}{N}}$, and $n_S \gtrsim \log p$. Then by choosing $w_{0j} = \mathcal{P}'_{\lambda_0}(\hat{\beta}_{init,j}^{(0)})/\lambda_0$ and $w_{kj} = \mathcal{P}'_{\lambda_1}(\hat{\delta}^{(k)}_{init,j})/\lambda_1$ *, with probability larger than* $1 - \exp(-c_1 \log p)$ *, we obtain the oracle AdaTrans.*

イロト イ押 トイヨ トイヨ トーヨ

Outline

4 [Numerical Studies](#page-56-0)

- **[Simulation Examples for TransFusion](#page-56-0)**
- [Simulation Examples for AdaTrans](#page-61-0)

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Recall the regression models

$$
\textbf{y}^{(0)} = \textbf{X}^{(0)} \boldsymbol{\beta}^{(0)} + \boldsymbol{\epsilon}^{(0)}, \, \, \textbf{y}^{(k)} = \textbf{X}^{(k)} (\boldsymbol{\beta}^{(0)} + \boldsymbol{\delta}^{(k)}) + \boldsymbol{\epsilon}^{(k)}, \, \, k = 1, \ldots, K.
$$

General setup:

Target task: $n_T = 150$, $s = 10$, $\beta^{(0)} = (\mathbf{1}_s^\top, \mathbf{0}_{p-s}^\top)^\top$, $\epsilon_i^{(0)} \sim N(0, 1)$.

Source task: $n_S = 200, K \in \{1, 3, 5, 7, 9\}, \epsilon_i^{(k)} \sim N(0, 1).$

Model shift:

$$
\quad \blacktriangleright \ \boldsymbol{\delta}_j^{(k)} \sim \mathcal{N}(0.1,0.2^2) \text{ for } 1 \leq j \leq 50 \text{ and } \boldsymbol{\delta}_j^{(k)}=0 \text{ otherwise.}
$$

Covariate shift:

- Homogeneous design (without covariate shift): Each $X_i^{(k)} \sim N(0, I)$.
- Heterogeneous design (with covariate shift): Each $X_i^{(k)} \sim N(0, \Sigma^{(k)})$, with $\bm{\Sigma}^{(k)} = (\bm{A}^{(k)})^\top (\bm{A}^{(k)}) + \bm{I}$, where $\bm{A}^{(k)}$ is a random matrix with each entry equals 0.3 with probability 0.3 and equals 0 with probability 0.7.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

- Lasso (baseline): LASSO regression on the target task.
- TransLasso (first-step) (Li et al., 2022): pooled estimator.
- TransLasso (two-step) (Li et al., 2022): debiased estimator.
- TransHDGLM (Li et al., 2023).
- TransFusion (first-step): the first step TransFusion estimator $\hat{\beta}_{\text{TF1}}^{(0)}$.
- TransFusion (two-step): the debiased TransFusion estimator $\hat{\beta}_{\text{TE2}}^{(0)}$.

イロトメ 御 トメ 差 トメ 差 トッ 差し

Simulation Results: TransFusion

Figure: Estimation errors with/without covariate shift. Upper panel: task diversity $\epsilon_D \neq 0$; lower panel: $\epsilon_D = 0$. イロメ イ部メ イ君メ イ君メー

Þ

Figure: Estimation errors with $\epsilon_D = 0$ (left panel) and $\epsilon_D \neq 0$ (right panel).

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Outline

4 [Numerical Studies](#page-56-0)

- **[Simulation Examples for TransFusion](#page-56-0)**
- **[Simulation Examples for AdaTrans](#page-61-0)**

メロトメ 伊 トメ 君 トメ 君 トッ 君

Recall the regression models

$$
\textbf{y}^{(0)} = \textbf{X}^{(0)} \boldsymbol{\beta}^{(0)} + \boldsymbol{\epsilon}^{(0)}, \ \ \textbf{y}^{(k)} = \textbf{X}^{(k)} (\boldsymbol{\beta}^{(0)} + \boldsymbol{\delta}^{(k)}) + \boldsymbol{\epsilon}^{(k)}, \ \ k = 1, \ldots, K.
$$

General setup:

- Target task: $n_T = 50$, $s = 8$, $\beta^{(0)} = (\mathbf{1}_s^{\top}, \mathbf{0}_{p-s}^{\top})^{\top}$, $\epsilon_i^{(0)} \sim N(0, 1)$.
- Source task: $n_S = 200$, $K = 2$, $\epsilon_i^{(k)} \sim N(0, 1)$.

Covariate shift: Same as TransFusion.

◆ロト→個ト→重ト→重ト→重。

Simulation Settings for AdaTrans

Model shift:

We generate two source samples with non-overlapping transferable features:

- First source: the non-transferable $\delta^{(k)}$ is nonzero for the first $s/2$ elements;
- Second source: the non-transferable $\delta^{(k)}$ is nonzero from $(s/2 + 1)$ -th to 25th elements.

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

- Lasso (baseline): LASSO regression on the target task.
- TransGLM (Tian and Feng, 2022): TransLasso with source detection.
- **AdaTrans: AdaTrans estimator.**
- Oracle AdaTrans: Oracle AdaTrans estimator.

◆ロト→個ト→重ト→重ト→重。

Simulation Results: AdaTrans

Figure: Estimation errors of different transfer learning methods.

AdaTrans can also auto-detect and filter out no[n-t](#page-64-0)r[an](#page-66-0)[sf](#page-64-0)[era](#page-65-0)[b](#page-66-0)[l](#page-60-0)[e](#page-61-0) [f](#page-65-0)[ea](#page-66-0)[t](#page-55-0)[u](#page-56-0)[re](#page-65-0)[s.](#page-66-0)

Þ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

We proposed a new transfer learning framework that is robust to covariate shift and adaptive to feature-specific transferable structure.

- **TransFusion:** Conducting a fused-regularization based "joint training $+$ debiasing" to achieve covariate-shift robustness.
- D-TransFusion: Incorporating intermediate estimators from different machines into TransFusion with one-shot communication.
- **AdaTrans:** Utilizing folded-concave penalization to auto-detect transferable structure while estimating parameters.
- Non-asymptotic bounds of estimation errors for all proposed estimators are established.

メロトメ 御 トメ 重 トメ 差 トー 差

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶